AIMer: ZKP-based Digital Signature

Seongkwang Kim ${ }^{3}$ Jincheol Ha ${ }^{1}$ Mincheol Son ${ }^{1}$ Byeonghak Lee ${ }^{1}$ Dukjae Moon ${ }^{3}$ Joohee Lee ${ }^{2}$ Sangyub Lee ${ }^{3}$ Jihoon Kwon ${ }^{3}$ Jihoon Cho ${ }^{3}$ Hyojin Yoon ${ }^{3}$ Jooyoung Lee ${ }^{1}$
${ }^{1}$ KAIST ${ }^{2}$ Sungshin Women's University $\quad{ }^{3}$ Samsung SDS 2023. 02. 24.

Table of Contents

(1) Introduction
(2) Preliminaries
(3) AIM and AIMer

4 Algebraic Analysis

(1) Introduction

(2) Preliminaries

(3) AIM and AIMer

4 Algebraic Analysis

ZKP-based Digital Signature

- ZKP-based digital signature is based on a zero-knowledge proof of knowledge of a solution to a certain hard problem
- For example, finding a preimage of a one-way function
- Efficiency of the ZKP-based signature is determined by choice of one-way function and zero-knowledge proof system
- Characteristics of the ZKP-based digital signature is:
\checkmark Minimal assumption: Security of ZKP-based digital signature only relies on the one-wayness of one-way function
\checkmark Trade-off between time \& size
\checkmark Small public key and secret key
\checkmark Relatively large signature size and sign/verify time

AlMer Signature

- In AIMer digital signature, AIM one-way function and BN++ proof system is used
- Compare to the other ZKP-based digital signature, AIMer has two advantages:
\checkmark Fully exploit repeated multiplier technique to reduce a signature size
\checkmark More secure against algebraic attacks

(1) Introduction

(2) Preliminaries

(3) AIM and AIMer

4) Algebraic Analysis

ZKP from MPC-in-the-Head

MPC-in-the-Head

Variable	Share					
	Party 1	Party 2	Party 3	Party 4	Party 5	
	5	6	1	3	9	2
y	10	0	6	7	5	6
z	9	4	1	2	7	1

Example of MPC-in-the-head setting for $N=5$ parties over \mathbb{F}_{11}

- MPC-in-the-head is a Zero-Knowledge protocol by running the MPC protocol in prover's head
- In the multiparty computation setting, $x^{(i)}$ denotes the i-th party's additive share of $x, \sum_{i} x^{(i)}=x$
- N parties have a shares of x, y, and z which satisfies $x y=z$. They wants to prove that $x y=z$ without reveal the value
- N parties and verifier run 5 rounds interactive protocol

MPC-in-the-Head - Toy Example

Phase	Variable	Share					Value
		Party 1	Party 2	Party 3	Party 4	Party 5	
Phase 1	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	$h(5,10,9,7,6,4)$	$h(6,0,4,2,4,6)$	$h(1,6,1,6,3,3)$	$h(3,7,2,2,0,7)$	$h(9,5,7,3,1,7)$	-

Gray values are hidden to the verifier

Phase 1

- N parties generate the shares of the another multiplication triples (a, b, c) which satisfies $a b=c$
- Each party commits ${ }^{1}$ to their own shares and open it

[^0]
MPC-in-the-Head - Toy Example

Phase	Variable	Share					Value
		Party 1	Party 2	Party 3	Party 4	Party 5	
Phase 1	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	$h(5,10,9,7,6,4)$	$h(6,0,4,2,4,6)$	$h(1,6,1,6,3,3)$	$h(3,7,2,2,0,7)$	$h(9,5,7,3,1,7)$	-
Phase 2			Random chal	enge $r=5$ from	he verifier		

Phase 2

- Verifier sends random challenge r to parties

MPC-in-the-Head - Toy Example

Phase	Variable	Share					Value
		Party 1	Party 2	Party 3	Party 4	Party 5	
Phase 1	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	$h(5,10,9,7,6,4)$	$h(6,0,4,2,4,6)$	$h(1,6,1,6,3,3)$	$h(3,7,2,2,0,7)$	$h(9,5,7,3,1,7)$	-
Phase 2			Random chal	enge $r=5$ from	the verifier		
Phase 3	α	10	10	0	6	4	8
	β	5	4	9	7	6	9
	v	3	9	3	10	8	0

Phase 3

- The parties locally set $\alpha^{(i)}=r \cdot x^{(i)}+a^{(i)}, \beta^{(i)}=y^{(i)}+b^{(i)}$ and broadcast them
- The parties locally set

$$
v^{(i)}= \begin{cases}r \cdot z^{(i)}-c^{(i)}+\alpha \cdot b^{(i)}+\beta \cdot a^{(i)}-\alpha \cdot \beta & \text { if } i=1 \\ r \cdot z^{(i)}-c^{(i)}+\alpha \cdot b^{(i)}+\beta \cdot a^{(i)} & \text { otherwise }\end{cases}
$$

MPC-in-the-Head - Toy Example

Phase	Variable	Share					Value
		Party 1	Party 2	Party 3	Party 4	Party 5	
Phase 1	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	$h(5,10,9,7,6,4)$	$h(6,0,4,2,4,6)$	$h(1,6,1,6,3,3)$	$h(3,7,2,2,0,7)$	$h(9,5,7,3,1,7)$	-
Phase 2	Random challenge $r=5$ from the verifier						
Phase 3	α	10	10	0	6	4	8
	β	5	4	9	7	6	9
	v	3	9	3	10	8	0

Phase 3 (Cont')

- Each party opens $v^{(i)}$ to compute v
- If $a b=c$ and $x y=z$, then $v=0$

MPC-in-the-Head - Toy Example

Phase	Variable	Share					Value
		Party 1	Party 2	Party 3	Party 4	Party 5	
Phase 1	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	$h(5,10,9,7,6,4)$	$h(6,0,4,2,4,6)$	$h(1,6,1,6,3,3)$	$h(3,7,2,2,0,7)$	$h(9,5,7,3,1,7)$	-
Phase 2		Random challenge $r=5$ from the verifier					
Phase 3	α	10	10	0	6	4	8
	β	5	4	9	7	6	9
	v	3	9	3	10	8	0

Phase 4
Random challenge $\bar{i}=4$ from the verifier

Phase 4

- Verifier sends a hidden party index \bar{i} to parties

MPC-in-the-Head - Toy Example

Phase	Variable	Share					Value
		Party 1	Party 2	Party 3	Party 4	Party 5	
Phase 1	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	$h(5,10,9,7,6,4)$	$h(6,0,4,2,4,6)$	$h(1,6,1,6,3,3)$	$h(3,7,2,2,0,7)$	$h(9,5,7,3,1,7)$	-
Phase 2		Random challenge $r=5$ from the verifier					
Phase 3	α	10	10	0	6	4	8
	β	5	4	9	7	6	9
	v	3	9	3	10	8	0
Phase 4	Random challenge $\bar{i}=4$ from the verifier						
Phase 5	Open all parties except \bar{i}-th party and check consistency						

Phase 5

- Each party $i \in[N] \backslash\{\bar{i}\}$ sends $x^{(i)}, y^{(i)}, z^{(i)}, a^{(i)}, b^{(i)}$, and $c^{(i)}$ to verifier
- Verifier checks the consistency of the received shares

MPC-in-the-Head

- Some agreed-upon circuit $C: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ and some output \mathbf{y}, prover wants to prove knowledge of input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that $C(\mathbf{x})=\mathbf{y}$ without revealing \mathbf{x}
- The single prover simulates N parties in prover's head. Prover first divides the input x_{1}, \ldots, x_{n} into shares $x_{1}^{(i)}, \ldots, x_{n}^{(i)}$
- For each addition $c=a+b, c^{(i)}=a^{(i)}+b^{(i)}$
- For each multiplication $c=a b$, prover divides c into shares $c^{(i)}=c$ then run multiplication check protocol

MPC-in-the-Head - Toy Example

$$
C\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2} \cdot x_{3}\right) \cdot x_{2}=10
$$

Variable	Share					
	Party 1	Party 2	Party 3	Party 4	Party 5	
x_{1}	7	2	1	3	0	2
x_{2}	3	5	10	5	5	6
x_{3}	9	5	9	3	10	3
$x_{2} \cdot x_{3}$	2	4	3	5	4	7
$x_{1}+x_{2} \cdot x_{3}$	9	6	4	8	4	9
$\left(x_{1}+x_{2} \cdot x_{3}\right) \cdot x_{2}$	8	3	0	4	6	10

- Addition is almost free, so that efficiency is highly depend on the number of the multiplications
- Soundness error is proportional to $1 / N$ and $1 /|\mathbb{F}|$

Fiat-Shamir Transform

- Prover derives r and \bar{i} from hash of the data of previous round without interaction. This technique is called Fiat-Shamir Transform
- Using Fiat-Shamir transform, interactive proof can be transformed into non-interactive proof
- Non-interactive zero-knowledge proof of knowledge of x which satisfies $f(x)=y$ for some one-way function f and output y is a digital signature
- Public key: output y
- Private key: input x
(2) Preliminaries
(3) AIM and AIMer

4 Algebraic Analysis

AIM - Specification

Scheme	λ	n	ℓ	e_{1}	e_{2}	e_{3}	e_{*}
AIM-I	128	128	2	3	27	-	5
AIM-III	192	192	2	5	29	-	7
AIM-V	256	256	3	3	53	7	5

- $\operatorname{Mer}[e](x)=x^{2^{e}-1}$: Mersenne power function in $\mathbb{F}_{2^{n}}$
- e is chosen such that $\operatorname{Mer}[e]$ becomes a permutation
- e_{1}, e_{3}, e_{*} : small values to provide smaller differential probability
- e_{2} : large value to obtain full degree over $\mathbb{F}_{2}\left(e_{2} \cdot e_{*}>n\right)$
- $\operatorname{Lin}(x)=A x+b:$ Multiplication by a random binary matrix A and addition by a random constant b in \mathbb{F}_{2}

AIM - Design Rationale

Mersenne S-box

- $\operatorname{Mer}[e](x)=x^{2^{e}-1}$
- Only one multiplication is required for its proof $\left(x y=x^{2^{e}}\right)$
- More secure than Inv S-box against algebraic attacks on \mathbb{F}_{2}
- Providing moderate DC/LC resistance

AIM - Design Rationale

Repetitive Structure

- In ZKP-based digital signature, efficiency is highly depend on the number of the multiplications
- In BN++ proof system, when multiplication triples use an identical multiplier in common, the proof can be done in a batched way, reducing the signature size
- AIM allows us to take full advantage of this technique

AIM - Design Rationale

Random Affine Layer

- Random affine layer incereases the algebraic degree of equations over $\mathbb{F}_{2^{n}}$
- In order to mitigate multi-target attacks, the affine map is uniquely generated for each user's iv

AIMer - Performance

Type	Scheme	$\|p k\|$ (B)	$\|s i g\|$ (B)	Sign (ms)	Verify (ms)
Lattice-based	Dilithium2	1312	2420	0.10	0.03
	Falcon-512	897	690	0.27	0.04
Hash-based	SPHINCS ${ }^{+}-128 s^{*}$	32	7856	315.74	0.35
	SPHINCS ${ }^{+}$-128f*	32	17088	16.32	0.97
ZKP-based	Picnic3-L1	32	12463	5.83	4.24
	Banquet	32	19776	7.09	5.24
	$\mathrm{Rainier}_{3}$	32	8544	0.97	0.89
	$\mathrm{Rainier}_{4}$	32	9600	1.15	1.05
	$\mathrm{BN}++\mathrm{Rain}_{3}$	32	6432	0.83	0.77
	$\mathrm{BN}++\mathrm{Rain}_{4}$	32	7488	0.93	0.86
	${ }^{--} \overline{\text { Al }}$ M $\overline{\mathrm{Mer}} \overline{-}^{-1}{ }^{-}$	$\overline{3} 2$	$59 \overline{0} \overline{4}$	0.82	$\overline{0} .7 \overline{8}$

*: -SHAKE-simple

- Experiments are measured in Intel Xeon E5-1650 v3 @ 3.50 GHz with 128 GB memory, AVX2 enabled
- Among the ZKP-based and hash-based digital signatures, AIMer is the most efficient one
(2) Preliminaries
(3) AIM and AIMer

4 Algebraic Analysis

Algebraic Attacks

- Basically, an algebraic attack is to model a symmetric key primitive as a system of (multivariate) polynomial equations and to solve it using algebraic technique.
- In this work, we mainly consider the following two attacks since they are possible using only a single evaluation data.
- The Gröbner basis attack
- The eXtended Linearization attack
- The condition giving only one evaluation data considers the ZKP-based digital signature based on symmetric key primitives.

Gröbner Basis Attack²

Definition (informal)

Given a field \mathbb{F} and its polynomial ring $\mathbb{F}[\mathbf{x}]$, a Gröbner basis G for a system $I \subseteq \mathbb{F}[\mathbf{x}]$ is a set of polynomials such that

- for all $f \in \mathbb{F}[\mathbf{x}]$ the remainder of f divided by G is unique, and
- for all $f \in I$ the remainder of f divided by G is 0 .
(Counter-example) Consider $\mathbb{R}[x, y, z]$ with lexicographic order. For $G=\left\{x^{2} y-2 y z, y^{2}-z^{2}, x z^{2}\right\}$ and $f=x^{2} y^{2}+y^{2} z^{2}-2 y^{2} z$,
- $f=y \cdot\left(x^{2} y-2 y z\right)+z^{2} \cdot\left(y^{2}-z^{2}\right)+0 \cdot x z^{2}+z^{4}$
- $f=\left(x^{2}+z^{2}-2 z\right) \cdot\left(y^{2}-z^{2}\right)+x \cdot x z^{2}+0 \cdot\left(x^{2} y-2 y z\right)+\left(z^{4}-2 z^{3}\right)$

[^1]
Gröbner Basis Attack (Example)

In $\mathbb{R}[x, y, z]$, a system

$$
\left\{x-y, x y z, x^{2}+y^{2}+z^{2}-1\right\}
$$

has a Gröbner basis in lex order as follows.

$$
\begin{aligned}
& \left\{x-y, y^{2}-0.5 z^{2}-0.5, z^{3}-z\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{c}
y^{2} \\
x-y
\end{array}\right\} \xrightarrow{y=0}\{x\} \xrightarrow{x=0} \varnothing
\end{aligned}
$$

Gröbner Basis Attack

- The Gröbner basis attack: solve a system by computing its Gröbner basis
(1) Compute a Gröbner basis in the grevlex ${ }^{3}$ order
(2) Change the order of terms to obtain a Gröbner basis in the lex ${ }^{4}$ order
(3) Find a univariate polynomial in this basis and solve it
(9) Substitute the solution into the basis and repeat Step 3
- Existence of a univariate polynomial in Step 3 is guaranteed the system has only finitely many solutions in the algebraic closure of the domain.
- This is the reason we need to add field equations of the form $x^{q}=x$ for all variables in the system over \mathbb{F}_{q}.
- The attack complexity is usually lower bounded by Step 1 , computing a Gröbner basis (in the grevlex order).

[^2]
The eXtended Linearization (XL)

- Trivial Linearization:
(1) Replace every monomial of degrees greater than 1 with a new variable to make the system linear
(2) Solve the linearized system using linear algebra techniques
(3) Check whether the solution satisfies the substitution in Step 1
- The number of equations should be greater than or equal to the number of monomials appearing in the system.
- It is hard to satisfy the above condition when only a single evaluation data is given.
- The XL attack (for Boolean quadratic system):
- Multiplying all monomials of degrees at most $D-2$ for some $D>2$
- For large enough D, the extended system has more equations than the number of appearing monomials.
- Apply trivial linearization to the extended system.

XL Attack (Example)

Consider the following system of equations over \mathbb{F}_{2} :

$$
\left\{\begin{array}{l}
f_{1}(x, y, z)=x y+x+y z+z=0 \\
f_{2}(x, y, z)=x z+x+y+1=0 \\
f_{3}(x, y, z)=x z+y z+y+z=0
\end{array}\right.
$$

- Trivial linearization does not work since there are 6 monomials and 3 equations.
- Choose $D=3$ and apply the XL attack.

XL Attack (Example)

$$
\left\{\begin{aligned}
x f_{1} & : x y z+x y+x z+x=0 \\
y f_{1} & : 0=0 \\
z f_{1} & : x y z+x z+y z+z=0 \\
f_{1} & : x y+x+y z+z=0 \\
x f_{2} & : x z+x y=0 \\
y f_{2} & : x y z+x y=0 \\
z f_{2} & : y z+z=0 \\
f_{2} & : x z+x+y+1=0 \\
x f_{3} & : x y z+x y=0 \\
y f_{3} & : x y z+y=0 \\
z f_{3} & : x z+z=0 \\
f_{3} & : x z+y z+y+z=0
\end{aligned}\right.
$$

$\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0\end{array}\right]\left[\begin{array}{c}x y z \\ x y \\ x z \\ x \\ y z \\ y \\ z \\ 1\end{array}\right]=0$
$\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}x y z \\ x y \\ x z \\ x \\ y z \\ y \\ z \\ 1\end{array}\right]=0$
(1) Extended system of equations
(2) Macaulay matrix for the extended system
(3) Performing Gaussian elimination

The Number of Quadratic Equations

To apply algebraic attacks, one has to represent a symmetric primitive as a system of equations.

- Each Mersenne S-box in AIM can be represented as a system of Boolean quadratic equations (w.r.t. its input/output).
- For example, there are n quadratic equations directly obtained from $x y=x^{2^{e}}$ for $x, y \in \mathbb{F}_{2^{n}}$.
- In fact, we choose the parameter e for the Mersenne S-boxes in AIM such that Mer[e] has $3 n$ quadratic equations.
- Compared to the inverse S-box having $5 n$ quadratic equations, our Mersenne S-boxes have smaller numbers of quadratic equations.
- The exact number of quadratic equations induced from S-box is a critical factor to algebraic attacks.

Experiment on an Even-Mansour Cipher

Consider an Even-Mansour cipher defined as

$$
E_{k}(m)=P(m+k)+k=c
$$

where the permutation P is defined as $P=R \circ S \circ L$ for random affine mappings L and R, and an S-box S given as $S(x)=x^{a}$.

- Goal: given a pair of (m, c), find corresponding key k
- Suppose S has νn Boolean quadratic equations. How the value of ν affects the cost of algebraic attacks to recover k ?

Experiment on Some S-boxes

S-box	Condition on the size n	Exponent	Implicit Boolean Quadratic Relation	ν
Inverse	$n>4$	$2^{n}-2$	$x y=1^{\dagger}$	5^{\dagger}
Mersenne	$\operatorname{gcd}(n, e)=1$	$2^{e}-1$	$x y=x^{2}$	$3^{\dagger \dagger}$
NGG	$n=2 s \geq 8$	$2^{s+1}+2^{s-1}-1$	$x y=x^{2^{s+1}+2^{s-1}}$	2

[^3]We perform an experiment computing a Gröbner basis for two kinds of systems representing the Even-Mansour ciphers with the above S-boxes.
(1) Basic system

- n quadratic equations that directly comes from the implicit Boolean quadratic relation
- n field equations of degrees 2 for computing Gröbner basis
(2) Full system
- all possible νn linearly independent quadratic equations induced from the S-box
- n field equations of degrees 2 for computing Gröbner basis

Experiment Result: Gröbner Basis Attack

Inverse S-box ($\nu=5$)

$$
\rightarrow s d \text { (basic) } \rightarrow-d_{\text {reg }} \text { (basic) } \rightarrow-s d \text { (full) } \cdots d_{r e g} \text { (full) }
$$

The cost of computing Gröbner basis is usually represented by the highest degree reached during the computation.

- $s d$: result from the experiment
- $d_{\text {reg }}$: theoretic estimation

Experiment Result: Gröbner Basis Attack

Gröbner Basis Computation Time

- Environment: AMD Ryzen 7 2700X 3.70 GHz with 128 GB memory

Experiment Result: XL Attack

Mersenne S-box $(\nu=3)$

Inverse S-box $(\nu=5)$

$$
\square D_{\exp } \text { (basic) } \cdots D_{\text {est }} \text { (basic) } \cdots D_{\exp }(\text { full }) \cdots-D_{\text {est }}(\text { full })
$$

The cost of XL attack is determined by the target degree D.

- $D_{\text {exp }}$: result from the experiment
- $D_{\text {est }}$: theoretic estimation

Systems for AIM-V

- $y_{i}=\operatorname{Mer}\left[e_{i}\right](x) \Longleftrightarrow x=\operatorname{Mer}\left[e_{i}\right]^{-1}\left(y_{i}\right) \Longleftrightarrow x y=x^{2^{e}}$
- $x \oplus \mathrm{ct}=\operatorname{Mer}\left[e_{*}\right](z) \Longleftrightarrow z=\operatorname{Mer}\left[e_{*}\right]^{-1}(x \oplus \mathrm{ct}) \Longleftrightarrow z(x \oplus \mathrm{ct})=z^{2^{e}}$
- $y_{i}=\operatorname{Mer}\left[e_{i}\right] \circ \operatorname{Mer}\left[e_{j}\right]^{-1}\left(y_{j}\right)=\operatorname{Mer}\left[e_{i}\right]\left(\operatorname{Mer}\left[e_{*}\right](z) \oplus c t\right)$

Algebraic Analysis on AIM

Scheme	\#Var	Variables	Gröbner Basis			XL	
			$d_{\text {reg }}$	Time		D	Time
AIM-I	n	z	51	300.8		52	244.8
	$2 n$	x, y_{2}	22	$\mathbf{2 1 4 . 9}$		14	150.4
	$3 n$	x, y_{1}, y_{2}	20	222.8		12	$\mathbf{1 4 8 . 0}$
AIM-III	n	z	82	474.0		84	375.3
	$2 n$	x, y_{2}	31	$\mathbf{3 1 0 . 6}$		18	203.0
	$3 n$	x, y_{1}, y_{2}	27	310.8		15	$\mathbf{1 9 4 . 1}$
AIM-V	n	z	100	601.1		101	489.7
	$2 n$	x, y_{2}	40	$\mathbf{4 0 6 . 2}$	26	289.5	
	$3 n$	x, y_{2}, y_{3}	47	510.4		20	$\mathbf{2 6 0 . 6}$
	$4 n$	x, y_{1}, y_{2}, y_{3}	45	530.3	19	266.1	

Thank you for listening!

Appendix
(5) Algebraic Degree (6) Monomial Orders
(7) Gröbner Basis Attack
(8) XL Attack
(9) Optimal Systems on AIM

Algebraic Degree

Suppose $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is defined as $f(x)=x^{a}$ for some $1 \leq a<2^{n}$. Then the algebraic degree of f is $\mathrm{hw}(a)$.

Suppose $\mathbb{F}_{2^{n}}$ is constructed as $\mathbb{F}_{2}(\alpha)$ where α is a root of an irreducible polynomial of degree n.

- $x \in \mathbb{F}_{2^{n}}$ can be represented as

$$
x=x_{0}+x_{1} \alpha+x_{2} \alpha^{2}+\cdots+x_{n-1} \alpha^{n-1}
$$

for some $x_{0}, x_{1}, \ldots, x_{n-1} \in \mathbb{F}_{2}$.

- $x^{2}=x_{0}+x_{1} \alpha^{2}+x_{2} \alpha^{4}+\cdots+x_{n-1} \alpha^{2(n-1)}$
- Each coefficient of x^{a} is a monomial of degree $\mathrm{hw}(a)$ with respect to $x_{0}, x_{1}, \ldots, x_{n-1}$.
(5) Algebraic Degree
(6) Monomial Orders
(7) Gröbner Basis Attack
(8) XL Attack
(9) Optimal Systems on AIM

Monomial Orders

A monomial order \prec is a total order on the set of monomials \mathcal{M};
(1) $\forall m \in \mathcal{M}, \mathbf{x}^{\mathbf{a}} \prec \mathbf{x}^{\mathbf{b}} \Longleftrightarrow m \mathbf{x}^{\mathbf{a}} \prec m \mathbf{x}^{\mathbf{b}}$
(2) The monomial $1=x^{(0,0, \ldots, 0)}$ is the smallest one

- lex (lexicographical) order
- $\mathbf{x}^{\mathbf{a}} \prec_{\text {lex }} \mathbf{x}^{\mathbf{b}}$ iff the first nonzero entry of $\mathbf{a}-\mathbf{b}$ is negative
- In $\mathbb{F}[x, y, z]$ with lex order,

$$
x y^{2} \prec x y^{2} z \prec x^{2} z^{2} \prec x^{2} y z \prec x^{3}
$$

- grevlex (graded reverse lexicographical) order
- $\mathbf{x}^{\mathbf{a}} \prec_{\text {grevlex }} \mathbf{x}^{\mathbf{b}}$ iff either $\sum_{i} a_{i}<\sum_{i} b_{i}$ or $\sum_{i} a_{i}=\sum_{i} b_{i}$ and $\mathrm{x}^{\mathbf{a}} \succ_{\text {invlex }} \mathrm{x}^{\mathbf{b}}$, where invlex is a lex order with inversely labeled variables.
- $\ln \mathbb{F}[x, y, z]$ with grevlex order,

$$
x y^{2} \prec x^{3} \prec x y^{2} z \prec x^{2} z^{2} \prec x^{2} y z
$$

(5) Algebraic Degree
(6) Monomial Orders
(7) Gröbner Basis Attack
(8) XL Attack
(9) Optimal Systems on AIM

Gröbner Basis Attack

- The complexity of computing Gröbner basis is estimated using the degree of regularity of the system.
- It basically estimates the highest degree reached during the Gröbner basis computation.
- For the degree $d_{\text {reg }}$ of regularity, the complexity computing a Gröbner basis is given by

$$
O\left(\binom{n_{v a r}+d_{r e g}}{d_{r e g}}^{\omega}\right)
$$

where $n_{v a r}$ is the number of variables in the system and $2 \leq \omega \leq 3$ is the linear algebra constant.

Gröbner Basis Attack

- $d_{\text {reg }}$ for an over-defined system is computed as follows.
- Consider a system $\left\{f_{i}\right\}_{i=1}^{m}$ of m equations in n variables where $m>n$ and $d_{i}=\operatorname{deg} f_{i}$.
- Then $d_{\text {reg }}$ is the smallest of the degrees of the terms with non-positive coefficients for the following Hilbert series under the semi-regularity assumption.

$$
\operatorname{HS}(z)=\frac{1}{(1-z)^{n}} \prod_{i=1}^{m}\left(1-z^{d_{i}}\right)
$$

- For an application to a symmetric key primitive,
- The system modeling the primitive is always over-defined due to the field equation of the form $x^{p^{e}}-x=0$ over $\mathbb{F}_{p^{e}}$.
- In most cases, compute $d_{\text {reg }}$ assuming the semi-regularity.

Example

Consider an Even-Mansour cipher defined as

$$
E_{k}(m)=P(m+k)+k=c
$$

where the permutation P is defined as $P=R \circ S \circ L$ for random affine mappings L and R, and an S-box S given as $S(x)=x^{a}$.

- Goal: given a pair of (m, c), find corresponding key k
(1) Build a system over $\mathbb{F}_{2^{n}}$ in one variable k :
- This kind of system is mainly considered in recent papers.
(2) Build a system over \mathbb{F}_{2} in n variables representing bits of k :
- νn implicit quadratic equations for some $\nu>0$, and n field equations of degree 2
- $\operatorname{HS}(z)=\frac{1}{(1-z)^{n}}\left(1-z^{2}\right)^{\nu n}\left(1-z^{2}\right)^{n}=(1+z)^{n}\left(1-z^{2}\right)^{\nu n}$

Example

$$
\operatorname{HS}(z)=(1+z)^{n}\left(1-z^{2}\right)^{\nu n}
$$

n	ν	$d_{\text {reg }}$	Time [bits]
8	1	3	14.73
	2	3	14.73
	3	3	14.73
	4	2	10.98
	5	2	10.98
9	1	4	18.96
	2	3	15.56
	3	3	15.56
	4	2	11.56
	5	2	11.56
10	1	4	19.93
	2	3	16.32
	3	3	16.32
	4	3	16.32
	5	2	12.09

n	ν	$d_{\text {reg }}$	Time [bits]
128	1	17	144.63
	2	11	104.94
	3	9	90.05
	4	8	82.20
	5	7	74.02
192	1	23	203.99
	2	15	148.81
	3	12	125.52
	4	10	108.93
	5	9	100.26
256	1	29	263.12
	2	19	192.58
	3	14	152.48
	4	12	135.19
	5	10	117.03

(5) Algebraic Degree

(6) Monomial Orders
(7) Gröbner Basis Attack
(8) XL Attack
(9) Optimal Systems on AIM

XL Attack

- How large D should be to solve the given system?
- There is no method to find such D without experimentally running the XL algorithm.
- We can give a loose bound for D, assuming the extended equations during the XL algorithm are linearly independent.
- Given a system of m Boolean quadratic equations in n variables:
- The XL algorithm with the target degree D multiplies $\sum_{i=1}^{D-2}\binom{n}{i}$ monomials, obtaining $m \cdot \sum_{i=1}^{D-2}\binom{n}{i}$ equations.
- Let T_{D} be the number of monomials appearing in the extended system. When the extended system is dense, i.e., all monomials appear, we have $T_{D}=\sum_{i=1}^{D}\binom{n}{i}$.
- The XL attack works when the number of linearly independent equations in the extended system is greater than or equal to T_{D}, and its complexity is given by $O\left(T_{D}^{\omega}\right)$.

(5) Algebraic Degree

(6) Monomial Orders
(7) Gröbner Basis Attack
(8) XL Attack
(9) Optimal Systems on AIM

Systems for AIM-V: n variables

$$
\begin{aligned}
& \left(\operatorname{Mer}\left[e_{*}\right](z) \oplus \mathrm{ct}\right)^{2^{e_{2}}}=\left(\operatorname{Mer}\left[e_{*}\right](z) \oplus \mathrm{ct}\right) \\
& \times \operatorname{Lin}^{\prime}\left(\operatorname{Mer}\left[e_{1}\right]\left(\operatorname{Mer}\left[e_{*}\right](z) \oplus \mathrm{ct}\right), \operatorname{Mer}\left[e_{3}\right]\left(\operatorname{Mer}\left[e_{*}\right](z) \oplus \mathrm{ct}\right), z\right)
\end{aligned}
$$

where $\operatorname{Lin}^{\prime}$ denotes a linear function such that $y_{2}=\operatorname{Lin}^{\prime}\left(y_{1}, y_{3}, z\right)$.

- $3 n$ equations of degree

$$
e_{*}+\max \left(\operatorname{deg}\left(\operatorname{Mer}\left[e_{1}\right] \circ \operatorname{Mer}\left[e_{*}\right]\right), \operatorname{deg}\left(\operatorname{Mer}\left[e_{3}\right] \circ \operatorname{Mer}\left[e_{*}\right]\right)\right)
$$

Systems for AIM-V: $2 n$ variables

$$
x \cdot y_{2}=x^{2^{e_{2}}}
$$

$\operatorname{Lin}\left(\operatorname{Mer}\left[e_{1}\right](x), y_{2}, \operatorname{Mer}\left[e_{3}\right](x)\right) \cdot(x \oplus \operatorname{ct})=\operatorname{Lin}\left(\operatorname{Mer}\left[e_{1}\right](x), y_{2}, \operatorname{Mer}\left[e_{3}\right](x)\right)^{2^{e} *}$

- $3 n$ quadratic equations
- $3 n$ equations of degree $\max \left(e_{1}, e_{3}\right)+1$

Systems for AIM-V: 3n variables

$$
\begin{aligned}
& x \cdot y_{2}=x^{2^{e_{2}}} \\
& x \cdot y_{3}=x^{2^{e_{3}}}
\end{aligned}
$$

$\operatorname{Lin}\left(\operatorname{Mer}\left[e_{1}\right](x), y_{2}, y_{3}\right) \cdot(x \oplus \mathrm{ct})=\operatorname{Lin}\left(\operatorname{Mer}\left[e_{1}\right](x), y_{2}, y_{3}\right)^{2^{e_{*}}}$

- $6 n$ quadratic equations
- $3 n$ equations of degree $e_{1}+1$

Systems for AIM-V: $4 n$ variables

$$
\begin{aligned}
& x \cdot y_{1}=x^{2^{e_{1}}}, \quad x \cdot y_{2}=x^{2^{e_{2}}}, \quad x \cdot y_{3}=x^{2^{e_{3}}} \\
& \operatorname{Lin}\left(y_{1}, y_{2}, y_{3}\right) \cdot(x \oplus \mathrm{ct})=\operatorname{Lin}\left(y_{1}, y_{2}, y_{3}\right)^{2^{e_{*}}}
\end{aligned}
$$

- $12 n$ quadratic equations

Optimal Systems on AIM

Scheme	\#Var	Variables	Gröbner Basis			XL	
			$d_{\text {reg }}$	Time		D	Time
AIM-I	n	z	51	300.8		52	244.8
	$2 n$	x, y_{2}	22	$\mathbf{2 1 4 . 9}$		14	150.4
	$3 n$	x, y_{1}, y_{2}	20	222.8		12	$\mathbf{1 4 8 . 0}$
AIM-III	n	z	82	474.0		84	375.3
	$2 n$	x, y_{2}	31	$\mathbf{3 1 0 . 6}$		18	203.0
	$3 n$	x, y_{1}, y_{2}	27	310.8		15	$\mathbf{1 9 4 . 1}$
AIM-V	n	z	100	601.1		101	489.7
	$2 n$	x, y_{2}	40	$\mathbf{4 0 6 . 2}$	26	289.5	
	$3 n$	x, y_{2}, y_{3}	47	510.4	20	$\mathbf{2 6 0 . 6}$	
	$4 n$	x, y_{1}, y_{2}, y_{3}	45	530.3	19	266.1	

[^0]: ${ }^{1}$ Commit means that keeping the value hidden to others, with the ability to reveal the committed value later

[^1]: ${ }^{2}$ Examples in this presentation are from J. F. Sauer and A. Szepieniec. SoK: Gröbner Basis Algorithms for Arithmetization Oriented Ciphers.

[^2]: ${ }^{3}$ graded reverse lexicographic
 ${ }^{4}$ lexicographic

[^3]: ${ }^{\dagger}$ Assuming x, y are nonzero.
 $\dagger \dagger$ This is not for all e, but we can choose such e.

