AIMer: ZKP-based Digital Signature

Seongkwang Kim³ Jincheol Ha¹ Mincheol Son¹ Byeonghak Lee¹ Dukjae Moon³ Joohee Lee² Sangyub Lee³ Jihoon Kwon³ Jihoon Cho³ Hyojin Yoon³ Jooyoung Lee¹

¹KAIST ²Sungshin Women's University ³Samsung SDS

2023. 02. 24.

AIM and AIMe

Algebraic Analysis

Table of Contents

1 Introduction

- 2 Preliminaries
- 3 AIM and AIMer
- Algebraic Analysis

ZKP-based Digital Signature

- ZKP-based digital signature is based on a zero-knowledge proof of knowledge of a solution to a certain hard problem
 - For example, finding a preimage of a one-way function
- Efficiency of the ZKP-based signature is determined by choice of **one-way function** and **zero-knowledge proof system**
- Characteristics of the ZKP-based digital signature is:
 - $\checkmark\,$ Minimal assumption : Security of ZKP-based digital signature only relies on the one-wayness of one-way function
 - \checkmark Trade-off between time & size
 - $\checkmark\,$ Small public key and secret key
 - $\checkmark\,$ Relatively large signature size and sign/verify time

AIMer Signature

- In AIMer digital signature, AIM one-way function and BN++ proof system is used
- Compare to the other ZKP-based digital signature, AIMer has two advantages:
 - ✓ Fully exploit repeated multiplier technique to reduce a signature size
 - $\checkmark\,$ More secure against algebraic attacks

- 3 AIM and AIMer
- Algebraic Analysis

AIM and AIMe

Algebraic Analysis

ZKP from MPC-in-the-Head

AIM and AIMer

MPC-in-the-Head

Variable		Value				
Variable	Party 1	Party 2	Party 3	Party 4	Party 5	value
x	5	6	1	3	9	2
y	10	0	6	7	5	6
z	9	4	1	2	7	1

Example of MPC-in-the-head setting for N = 5 parties over \mathbb{F}_{11}

- MPC-in-the-head is a Zero-Knowledge protocol by running the MPC protocol in prover's head
- In the multiparty computation setting, $x^{(i)}$ denotes the i-th party's additive share of x, $\sum_i x^{(i)} = x$
- N parties have a shares of x, y, and z which satisfies xy = z. They wants to prove that xy = z without reveal the value
- $\bullet~N$ parties and verifier run 5 rounds interactive protocol

Phase	Variable	riphe					Value
FlidSe	Variable	Party 1	Party 2	Party 3	Party 4	Party 5	value
	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
Phase 1	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	h(5, 10, 9, 7, 6, 4)	h(6, 0, 4, 2, 4, 6)	h(1, 6, 1, 6, 3, 3)	h(3, 7, 2, 2, 0, 7)	h(9, 5, 7, 3, 1, 7)	-

Gray values are hidden to the verifier

Phase 1

- N parties generate the shares of the another multiplication triples (a, b, c) which satisfies ab = c
- Each party commits¹ to their own shares and open it

¹Commit means that keeping the value hidden to others, with the ability to reveal the committed value later

Algebraic Analysis

MPC-in-the-Head - Toy Example

Phase	Variable	Share					Value
	variable	Party 1	Party 2	Party 3	Party 4	Party 5	value
	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
Phase 1	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	h(5, 10, 9, 7, 6, 4)	h(6, 0, 4, 2, 4, 6)	h(1,6,1,6,3,3)	h(3, 7, 2, 2, 0, 7)	h(9, 5, 7, 3, 1, 7)	-
Phase 2		Random challenge $r = 5$ from the verifier					

Phase 2

• Verifier sends random challenge r to parties

Dhace	Variable			Share			Value
Filase	variable	Party 1	Party 2	Party 3	Party 4	Party 5	value
	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
Phase 1	z	9	4	1	2	7	1
	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	h(5, 10, 9, 7, 6, 4)	h(6, 0, 4, 2, 4, 6)	h(1, 6, 1, 6, 3, 3)	h(3, 7, 2, 2, 0, 7)	h(9, 5, 7, 3, 1, 7)	-
Phase 2			Random chal	lenge $r = 5$ from t	he verifier		
	α	10	10	0	6	4	8
Phase 3	β	5	4	9	7	6	9
	v	3	9	3	10	8	0

Phase 3

- \bullet The parties locally set $\alpha^{(i)}=r\cdot x^{(i)}+a^{(i)}, \beta^{(i)}=y^{(i)}+b^{(i)}$ and broadcast them
- The parties locally set

$$v^{(i)} = \begin{cases} r \cdot z^{(i)} - c^{(i)} + \alpha \cdot b^{(i)} + \beta \cdot a^{(i)} - \alpha \cdot \beta & \text{if } i = 1\\ r \cdot z^{(i)} - c^{(i)} + \alpha \cdot b^{(i)} + \beta \cdot a^{(i)} & \text{otherwise} \end{cases}$$

Phase	Variable	Variable Share					Value
1 Hase	Variable	Party 1	Party 2	Party 3	Party 4	Party 5	value
	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
Phase 1	z	9	4	1	2	7	1
	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	h(5, 10, 9, 7, 6, 4)	h(6, 0, 4, 2, 4, 6)	h(1, 6, 1, 6, 3, 3)	h(3, 7, 2, 2, 0, 7)	h(9, 5, 7, 3, 1, 7)	-
Phase 2			Random chal	lenge $r = 5$ from t	he verifier		
	α	10	10	0	6	4	8
Phase 3	β	5	4	9	7	6	9
	v	3	9	3	10	8	0

Phase 3 (Cont')

• Each party opens $v^{(i)}$ to compute v

• If
$$ab = c$$
 and $xy = z$, then $v = 0$

Phase	Variable			Share			Value
Phase	variable	Party 1	Party 2	Party 3	Party 4	Party 5	value
	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
Phase 1	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	h(5, 10, 9, 7, 6, 4)	h(6, 0, 4, 2, 4, 6)	h(1, 6, 1, 6, 3, 3)	h(3, 7, 2, 2, 0, 7)	h(9, 5, 7, 3, 1, 7)	-
Phase 2			Random chal	lenge $r = 5$ from t	he verifier		
	α	10	10	0	6	4	8
Phase 3	β	5	4	9	7	6	9
	v	3	9	3	10	8	0
Phase 4			Random cha	llenge $\overline{i} = 4$ from t	he verifier		

Phase 4

• Verifier sends a hidden party index \overline{i} to parties

Phase	Variable			Share			Value
1 11836	variable	Party 1	Party 2	Party 3	Party 4	Party 5	value
	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
Phase 1	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	h(5,10,9,7,6,4)	h(6,0,4,2,4,6)	h(1,6,1,6,3,3)	h(3, 7, 2, 2, 0, 7)	h(9,5,7,3,1,7)	-
Phase 2			Random chal	lenge $r = 5$ from t	he verifier		
	α	10	10	0	6	4	8
Phase 3	β	5	4	9	7	6	9
	v	3	9	3	10	8	0
Phase 4		Random challenge $\overline{i} = 4$ from the verifier					
Phase 5	Open all parties except \bar{i} -th party and check consistency						

Phase 5

- Each party $i\in [N]\backslash\{\bar{i}\}$ sends $x^{(i)},y^{(i)},z^{(i)},a^{(i)},b^{(i)},$ and $c^{(i)}$ to verifier
- Verifier checks the consistency of the received shares

MPC-in-the-Head

- Some agreed-upon circuit $C : \mathbb{F}^n \to \mathbb{F}^m$ and some output \mathbf{y} , prover wants to prove knowledge of input $\mathbf{x} = (x_1, \ldots, x_n)$ such that $C(\mathbf{x}) = \mathbf{y}$ without revealing \mathbf{x}
- The single prover simulates N parties in prover's head. Prover first divides the input x_1, \ldots, x_n into shares $x_1^{(i)}, \ldots, x_n^{(i)}$
- For each addition c = a + b, $c^{(i)} = a^{(i)} + b^{(i)}$
- For each multiplication c = ab, prover divides c into shares $c^{(i)} = c$ then run multiplication check protocol

AIM and AIMe

Algebraic Analysis

MPC-in-the-Head - Toy Example

$$C(x_1, x_2, x_3) = (x_1 + x_2 \cdot x_3) \cdot x_2 = 10$$

Variable	Share					
Valiable	Party 1	Party 2	Party 3	Party 4	Party 5	value
x_1	7	2	1	3	0	2
x_2	3	5	10	5	5	6
x_3	9	5	9	3	10	3
$x_2 \cdot x_3$	2	4	3	5	4	7
$x_1 + x_2 \cdot x_3$	9	6	4	8	4	9
$(x_1 + x_2 \cdot x_3) \cdot x_2$	8	3	0	4	6	10

- Addition is almost *free*, so that efficiency is highly depend on the number of the multiplications
- \bullet Soundness error is proportional to 1/N and $1/|\mathbb{F}|$

Fiat-Shamir Transform

- Prover derives r and \bar{i} from hash of the data of previous round without interaction. This technique is called Fiat-Shamir Transform
- Using Fiat-Shamir transform, interactive proof can be transformed into non-interactive proof
- Non-interactive zero-knowledge proof of knowledge of x which satisfies f(x)=y for some one-way function f and output y is a digital signature
 - Public key: output y
 - Private key: input x

1 Introduction

2 Preliminaries

AIM and AIMer ○●0000 Algebraic Analysis

AIM - Specification

Scheme	λ	n	l	e_1	e_2	e_3	e_*
AIM-I	128	128	2	3	27	-	5
AIM-III	192	192	2	5	29	-	7
AIM-V	256	256	3	3	53	7	5

• $Mer[e](x) = x^{2^e-1}$: Mersenne power function in \mathbb{F}_{2^n}

- e is chosen such that Mer[e] becomes a permutation
- e_1, e_3, e_* : small values to provide smaller differential probability
- e_2 : large value to obtain full degree over \mathbb{F}_2 $(e_2 \cdot e_* > n)$
- Lin(x) = Ax + b: Multiplication by a random binary matrix A and addition by a random constant b in \mathbb{F}_2

Introd	uction
000	

AIM and AIMer

Algebraic Analysis

AIM - Design Rationale

Mersenne S-box

- $\mathsf{Mer}[e](x) = x^{2^e 1}$
- Only one multiplication is required for its proof $(xy = x^{2^e})$
- $\bullet\,$ More secure than Inv S-box against algebraic attacks on \mathbb{F}_2
- Providing moderate DC/LC resistance

AIM and AIMer

Algebraic Analysis

AIM - Design Rationale

Repetitive Structure

- In ZKP-based digital signature, efficiency is highly depend on the number of the multiplications
- In BN++ proof system, when multiplication triples use an identical multiplier in common, the proof can be done in a batched way, reducing the signature size
- AIM allows us to take full advantage of this technique

Introd	uction
000	

AIM and AIMer

Algebraic Analysis

AIM - Design Rationale

Random Affine Layer

- Random affine layer incereases the algebraic degree of equations over \mathbb{F}_{2^n}
- In order to mitigate multi-target attacks, the affine map is uniquely generated for each user's iv

AlMer - Performance

Туре	Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Lauter Land	Dilithium2	1312	2420	0.10	0.03
Lattice-Dased	Falcon-512	897	690	0.27	0.04
	SPHINCS ⁺ -128s*	32	7856	315.74	0.35
Hash-based	SPHINCS ⁺ -128f*	32	17088	16.32	0.97
	Picnic3-L1	32	12463	5.83	4.24
	Banquet	32	19776	7.09	5.24
	$Rainier_3$	32	8544	0.97	0.89
ZKP-based	$Rainier_4$	32	9600	1.15	1.05
	$BN++Rain_3$	32	6432	0.83	0.77
	$BN++Rain_4$	32	7488	0.93	0.86
	AlMer-I	32	5904	0.82	0.78

*: -SHAKE-simple

- Experiments are measured in Intel Xeon E5-1650 v3 @ 3.50GHz with 128 GB memory, AVX2 enabled
- Among the ZKP-based and hash-based digital signatures, AIMer is the most efficient one

1 Introduction

- 2 Preliminaries
- 3 AIM and AIMer
- 4 Algebraic Analysis

Algebraic Attacks

- Basically, an algebraic attack is to model a symmetric key primitive as a system of (multivariate) polynomial equations and to solve it using algebraic technique.
- In this work, we mainly consider the following two attacks since they are possible using only a single evaluation data.
 - The Gröbner basis attack
 - The eXtended Linearization attack
- The condition giving only one evaluation data considers the ZKP-based digital signature based on symmetric key primitives.

Gröbner Basis Attack²

Definition (informal)

Given a field \mathbb{F} and its polynomial ring $\mathbb{F}[\mathbf{x}]$, a Gröbner basis G for a system $I \subseteq \mathbb{F}[\mathbf{x}]$ is a set of polynomials such that

- for all $f \in \mathbb{F}[\mathbf{x}]$ the remainder of f divided by G is unique, and
- for all $f \in I$ the remainder of f divided by G is 0.

(Counter-example) Consider
$$\mathbb{R}[x, y, z]$$
 with lexicographic order. For $G = \{x^2y - 2yz, y^2 - z^2, xz^2\}$ and $f = x^2y^2 + y^2z^2 - 2y^2z$,
• $f = y \cdot (x^2y - 2yz) + z^2 \cdot (y^2 - z^2) + 0 \cdot xz^2 + z^4$
• $f = (x^2 + z^2 - 2z) \cdot (y^2 - z^2) + x \cdot xz^2 + 0 \cdot (x^2y - 2yz) + (z^4 - 2z^3)$

²Examples in this presentation are from J. F. Sauer and A. Szepieniec. *SoK: Gröbner Basis Algorithms for Arithmetization Oriented Ciphers*.

Introduction	Preliminaries	AIM and AIMer	Algebraic Analysis
000	00000000000	000000	
Gröbner Basis	Attack (Example		

In $\mathbb{R}[x,y,z]$, a system

$$\{x - y, xyz, x^2 + y^2 + z^2 - 1\}$$

has a Gröbner basis in lex order as follows.

$$\{x - y, y^2 - 0.5z^2 - 0.5, z^3 - z\}.$$

Gröbner Basis Attack

- The Gröbner basis attack: solve a system by computing its Gröbner basis
 - Compute a Gröbner basis in the grevlex³ order
 - Change the order of terms to obtain a Gröbner basis in the lex⁴ order
 - Sind a univariate polynomial in this basis and solve it
 - Substitute the solution into the basis and repeat Step 3
- Existence of a univariate polynomial in Step 3 is guaranteed the system has only finitely many solutions in the algebraic closure of the domain.
 - This is the reason we need to add field equations of the form $x^q = x$ for all variables in the system over \mathbb{F}_q .
- The attack complexity is usually lower bounded by Step 1, computing a Gröbner basis (in the grevlex order).

³graded reverse lexicographic ⁴lexicographic

The eXtended Linearization (XL)

Trivial Linearization:

- Replace every monomial of degrees greater than 1 with a new variable to make the system linear
- Solve the linearized system using linear algebra techniques
- Solution Step 1 Check whether the solution satisfies the substitution in Step 1
 - The number of equations should be greater than or equal to the number of monomials appearing in the system.
 - It is hard to satisfy the above condition when only a single evaluation data is given.
- The XL attack (for Boolean quadratic system):
 - Multiplying all monomials of degrees at most D-2 for some D>2
 - For large enough D, the extended system has more equations than the number of appearing monomials.
 - Apply trivial linearization to the extended system.

AIM and AIMer

XL Attack (Example)

Consider the following system of equations over \mathbb{F}_2 :

$$\begin{cases} f_1(x, y, z) = xy + x + yz + z = 0\\ f_2(x, y, z) = xz + x + y + 1 = 0\\ f_3(x, y, z) = xz + yz + y + z = 0 \end{cases}$$

- Trivial linearization does not work since there are 6 monomials and 3 equations.
- Choose D = 3 and apply the XL attack.

AIM and AIMe

Algebraic Analysis

XL Attack (Example)

$(xf_1: xyz + xy + xz + x = 0)$	[11110000]			[11110000]		
$yf_1: 0 = 0$	000000000			01011010		
$zf_1: xyz + xz + yz + z = 0$	10101010	$\begin{bmatrix} xyz \end{bmatrix}$	-]	00111010	$\begin{bmatrix} xyz \end{bmatrix}$	
$f_1: xy + x + yz + z = 0$	01011010	xy		00010100	xy	
$xf_2: xz + xy = 0$	01100000	xz		00001010	xz	
$yf_2: xyz + xy = 0$	11000000	x	- 0	00000101	<i>x</i>	_
$zf_2: yz + z = 0$	00001010	yz		00000011	yz	_
$f_2 : xz + x + y + 1 = 0$	00110101	y		00000000	y	
$xf_3: xyz + xy = 0$	11000000	z		00000000	z	
$yf_3: xyz + y = 0$	10000100	L 1]	00000000		
$zf_3: xz + z = 0$	00100010			00000000		
$f_3: xz + yz + y + z = 0$	00101110			[00000000]		

- Extended system of equations
- 2 Macaulay matrix for the extended system
- erforming Gaussian elimination

0

The Number of Quadratic Equations

To apply algebraic attacks, one has to represent a symmetric primitive as a system of equations.

- Each Mersenne S-box in AIM can be represented as a system of Boolean quadratic equations (w.r.t. its input/output).
 - For example, there are n quadratic equations directly obtained from $xy=x^{2^e}$ for $x,y\in\mathbb{F}_{2^n}.$
 - In fact, we choose the parameter e for the Mersenne S-boxes in AIM such that Mer[e] has 3n quadratic equations.
 - Compared to the inverse S-box having 5n quadratic equations, our Mersenne S-boxes have smaller numbers of quadratic equations.
- The exact number of quadratic equations induced from S-box is a critical factor to algebraic attacks.

Introduction	Preliminaries	AIM and AIMer	Algebraic Analysis
000	00000000000	000000	
Experiment on	an Even-Mansou	r Cipher	

Consider an Even-Mansour cipher defined as

$$E_k(m) = P(m+k) + k = c$$

where the permutation P is defined as $P = R \circ S \circ L$ for random affine mappings L and R, and an S-box S given as $S(x) = x^a$.

- Goal: given a pair of (m, c), find corresponding key k
- Suppose S has νn Boolean quadratic equations. How the value of ν affects the cost of algebraic attacks to recover k?

Experiment on Some S-boxes

S-box	$\begin{array}{c} \text{Condition} \\ \text{on the size } n \end{array}$	Exponent	Implicit Boolean Quadratic Relation	ν
Inverse	n > 4	$2^n - 2$	$xy = 1^{\dagger}$	5^{\dagger}
Mersenne	$\gcd(n, e) = 1$	$2^{e} - 1$	$xy = x^{2^e}$	$3^{\dagger \dagger}$
NGG	$n=2s\geq 8$	$2^{s+1} + 2^{s-1} - 1$	$xy = x^{2^{s+1} + 2^{s-1}}$	2

[†] Assuming x, y are nonzero.

^{\dagger †} This is not for all e, but we can choose such e.

We perform an experiment computing a Gröbner basis for two kinds of systems representing the Even-Mansour ciphers with the above S-boxes.

- Basic system
 - n quadratic equations that directly comes from the implicit Boolean quadratic relation
 - $\bullet \ n$ field equations of degrees 2 for computing Gröbner basis
- 2 Full system
 - $\bullet\,$ all possible νn linearly independent quadratic equations induced from the S-box
 - $\bullet \ n$ field equations of degrees 2 for computing Gröbner basis

AIM and AIMe

Algebraic Analysis

Experiment Result: Gröbner Basis Attack

The cost of computing Gröbner basis is usually represented by the highest degree reached during the computation.

- *sd*: result from the experiment
- d_{reg} : theoretic estimation

AIM and AIMe

Algebraic Analysis

Experiment Result: Gröbner Basis Attack

• Environment: AMD Ryzen 7 2700X 3.70GHz with 128 GB memory

AIM and AIMe

Algebraic Analysis

Experiment Result: XL Attack

The cost of XL attack is determined by the target degree D.

- D_{exp} : result from the experiment
- D_{est} : theoretic estimation

Introduction

Preliminaries

AIM and AIMe

Algebraic Analysis

Systems for AIM-V

• $y_i = \operatorname{Mer}[e_i](x) \iff x = \operatorname{Mer}[e_i]^{-1}(y_i) \iff xy = x^{2^e}$ • $x \oplus \operatorname{ct} = \operatorname{Mer}[e_*](z) \iff z = \operatorname{Mer}[e_*]^{-1}(x \oplus \operatorname{ct}) \iff z(x \oplus \operatorname{ct}) = z^{2^e}$ • $y_i = \operatorname{Mer}[e_i] \circ \operatorname{Mer}[e_j]^{-1}(y_j) = \operatorname{Mer}[e_i] (\operatorname{Mer}[e_*](z) \oplus \operatorname{ct})$

AIM and AIMe

Algebraic Analysis

Algebraic Analysis on AIM

Scheme	# Var	Variables	Gröbner Basis		-	XL
			$\overline{d_{reg}}$	Time	D	Time
AIM-I	n	z	51	300.8	52	244.8
	2n	x , y_2	22	214.9	14	150.4
	3n	x , y_1 , y_2	20	222.8	12	148.0
AIM-III	n	z	82	474.0	84	375.3
	2n	x , y_2	31	310.6	18	203.0
	3n	x , y_1 , y_2	27	310.8	15	194.1
AIM-V	n	z	100	601.1	101	489.7
	2n	x , y_2	40	406.2	26	289.5
	3n	x , y_2 , y_3	47	510.4	20	260.6
	4n	x , y_1 , y_2 , y_3	45	530.3	19	266.1

Thank you for listening!

Appendix

Algebraic Degree	Monomial Orders	Gröbner Basis Attack	XL Attack	Optimal Systems on AIM
●0	00	00000	00	

5 Algebraic Degree

- 6 Monomial Orders
- **Gröbner Basis Attack**
- 8 XL Attack
- Optimal Systems on AIM

Algebraic Degree	Monomial Orders	Gröbner Basis Attack	XL Attack	Optimal Systems on AIM
⊙●		00000	00	000000
Algebraic [Degree			

Suppose $f : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is defined as $f(x) = x^a$ for some $1 \le a < 2^n$. Then the algebraic degree of f is hw(a).

Suppose \mathbb{F}_{2^n} is constructed as $\mathbb{F}_2(\alpha)$ where α is a root of an irreducible polynomial of degree n.

• $x \in \mathbb{F}_{2^n}$ can be represented as

$$x = x_0 + x_1 \alpha + x_2 \alpha^2 + \dots + x_{n-1} \alpha^{n-1}$$

for some $x_0, x_1, \ldots, x_{n-1} \in \mathbb{F}_2$.

•
$$x^2 = x_0 + x_1 \alpha^2 + x_2 \alpha^4 + \dots + x_{n-1} \alpha^{2(n-1)}$$

 Each coefficient of x^a is a monomial of degree hw(a) with respect to x₀, x₁,..., x_{n-1}.

Algebraic Degree	Monomial Orders ●○	Gröbner Basis Attack 00000	XL Attack 00	Optimal Systems on AIM

5 Algebraic Degree

6 Monomial Orders

Gröbner Basis Attack

8 XL Attack

Optimal Systems on AIM

Algebraic Degree	Monomial Orders	Gröbner Basis Attack	XL Attack	Optimal Systems on AIM
	⊙●	00000	00	000000
Monomial	Orders			

A monomial order \prec is a total order on the set of monomials $\mathcal{M};$

$$) \ \forall m \in \mathcal{M}, \ \mathbf{x^a} \prec \mathbf{x^b} \iff m\mathbf{x^a} \prec m\mathbf{x^b}$$

2 The monomial $1 = \mathbf{x}^{(0,0,\dots,0)}$ is the smallest one

- lex (lexicographical) order
 - $\bullet \ x^{\mathbf{a}} \prec_{\mathsf{lex}} x^{\mathbf{b}}$ iff the first nonzero entry of $\mathbf{a} \mathbf{b}$ is negative
 - In $\mathbb{F}[x, y, z]$ with lex order,

$$xy^2 \prec xy^2z \prec x^2z^2 \prec x^2yz \prec x^3$$

- grevlex (graded reverse lexicographical) order
 - $\mathbf{x}^{\mathbf{a}} \prec_{\mathsf{grevlex}} \mathbf{x}^{\mathbf{b}}$ iff either $\sum_{i} a_{i} < \sum_{i} b_{i}$ or $\sum_{i} a_{i} = \sum_{i} b_{i}$ and $\mathbf{x}^{\mathbf{a}} \succ_{\mathsf{invlex}} \mathbf{x}^{\mathbf{b}}$, where invlex is a lex order with inversely labeled variables.
 - In $\mathbb{F}[x,y,z]$ with grevlex order,

$$xy^2 \prec x^3 \prec xy^2z \prec x^2z^2 \prec x^2yz$$

Algebraic Degree 00	Monomial Orders	Gröbner Basis Attack ●0000	XL Attack 00	Optimal Systems on AIM

5 Algebraic Degree

6 Monomial Orders

7 Gröbner Basis Attack

8 XL Attack

Optimal Systems on AIM

- The complexity of computing Gröbner basis is estimated using *the degree of regularity* of the system.
- It basically estimates the highest degree reached during the Gröbner basis computation.
- For the degree d_{reg} of regularity, the complexity computing a Gröbner basis is given by

$$O\left(\binom{n_{var}+d_{reg}}{d_{reg}}^{\omega}\right)$$

where n_{var} is the number of variables in the system and $2 \leq \omega \leq 3$ is the linear algebra constant.

- d_{reg} for an over-defined system is computed as follows.
 - Consider a system $\{f_i\}_{i=1}^m$ of m equations in n variables where m > n and $d_i = \deg f_i$.
 - Then d_{reg} is the smallest of the degrees of the terms with non-positive coefficients for the following Hilbert series under the semi-regularity assumption.

$$HS(z) = \frac{1}{(1-z)^n} \prod_{i=1}^m (1-z^{d_i}).$$

- For an application to a symmetric key primitive,
 - The system modeling the primitive is always over-defined due to the field equation of the form $x^{p^e} x = 0$ over \mathbb{F}_{p^e} .
 - In most cases, compute d_{reg} assuming the semi-regularity.

Algebraic Degree 00	Monomial Orders	Gröbner Basis Attack 000●0	XL Attack 00	Optimal Systems on AIM
Example				

Consider an Even-Mansour cipher defined as

$$E_k(m) = P(m+k) + k = c$$

where the permutation P is defined as $P = R \circ S \circ L$ for random affine mappings L and R, and an S-box S given as $S(x) = x^a$.

- $\bullet\,$ Goal: given a pair of $(m,c)\text{, find corresponding key}\,k$
 - **1** Build a system over \mathbb{F}_{2^n} in one variable k:
 - This kind of system is mainly considered in recent papers.
 - 2 Build a system over \mathbb{F}_2 in n variables representing bits of k:
 - νn implicit quadratic equations for some $\nu>0,$ and n field equations of degree 2

• HS(z) =
$$\frac{1}{(1-z)^n} (1-z^2)^{\nu n} (1-z^2)^n = (1+z)^n (1-z^2)^{\nu n}$$

Algebraic Degree	Monomial Orders	Gröbner Basis Attack 0000●	XL Attack 00	Optimal Systems on AIM
Example				

$$HS(z) = (1+z)^n (1-z^2)^{\nu n}$$

n	ν	d_{reg}	Time [bits]	n	ν	d_{reg}	Time [bits]
8	1	3	14.73	128	1	17	144.63
	2	3	14.73		2	11	104.94
	3	3	14.73		3	9	90.05
	4	2	10.98		4	8	82.20
	5	2	10.98		5	7	74.02
9	1	4	18.96	192	1	23	203.99
	2	3	15.56		2	15	148.81
	3	3	15.56		3	12	125.52
	4	2	11.56		4	10	108.93
	5	2	11.56		5	9	100.26
10	1	4	19.93	256	1	29	263.12
	2	3	16.32		2	19	192.58
	3	3	16.32		3	14	152.48
	4	3	16.32		4	12	135.19
	5	2	12.09		5	10	117.03

Algebraic Degree	Monomial Orders	Gröbner Basis Attack 00000	XL Attack ●○	Optimal Systems on AIM

5 Algebraic Degree

- 6 Monomial Orders
- 7 Gröbner Basis Attack

8 XL Attack

Optimal Systems on AIM

Algebraic Degree	Monomial Orders	Gröbner Basis Attack 00000	XL Attack ○●	Optimal Systems on AIM
XL Attack				

- How large D should be to solve the given system?
 - There is no method to find such *D* without experimentally running the XL algorithm.
 - We can give a loose bound for *D*, assuming the extended equations during the XL algorithm are linearly independent.
- Given a system of m Boolean quadratic equations in n variables:
 - The XL algorithm with the target degree D multiplies $\sum_{i=1}^{D-2} \binom{n}{i}$ monomials, obtaining $m \cdot \sum_{i=1}^{D-2} \binom{n}{i}$ equations.
 - Let T_D be the number of monomials appearing in the extended system. When the extended system is dense, i.e., all monomials appear, we have $T_D = \sum_{i=1}^{D} {n \choose i}$.
 - The XL attack works when the number of linearly independent equations in the extended system is greater than or equal to T_D , and its complexity is given by $O(T_D^{\omega})$.

Algebraic Degree	Monomial Orders	Gröbner Basis Attack 00000	XL Attack 00	Optimal Systems on AIM •00000

5 Algebraic Degree

- 6 Monomial Orders
- **Gröbner Basis Attack**

8 XL Attack

Optimal Systems on AIM

Algebraic Degree Monomial Orders Gröbner Basis Attack Optimal Systems on AIM

Systems for AIM-V: *n* variables

$$\begin{split} (\mathsf{Mer}[e_*](z) \oplus \mathsf{ct})^{2^{e_2}} &= (\mathsf{Mer}[e_*](z) \oplus \mathsf{ct}) \\ \times \mathsf{Lin}' (\mathsf{Mer}[e_1](\mathsf{Mer}[e_*](z) \oplus \mathsf{ct}), \mathsf{Mer}[e_3](\mathsf{Mer}[e_*](z) \oplus \mathsf{ct}), z) \end{split}$$

where Lin' denotes a linear function such that $y_2 = \text{Lin}'(y_1, y_3, z)$.

• 3n equations of degree

 $e_* + \max(\deg(\mathsf{Mer}[e_1] \circ \mathsf{Mer}[e_*]), \deg(\mathsf{Mer}[e_3] \circ \mathsf{Mer}[e_*]))$

 Algebraic Degree
 Monomial Orders
 Gröbner Basis Attack
 XL Attack
 Optimal Systems on AIM

 OO
 OO
 OO
 OO
 OO
 OO

Systems for AIM-V: 2n variables

$$x \cdot y_2 = x^{2^{e_2}},$$

 $\mathsf{Lin}(\mathsf{Mer}[e_1](x), y_2, \mathsf{Mer}[e_3](x)) \cdot (x \oplus \mathsf{ct}) = \mathsf{Lin}(\mathsf{Mer}[e_1](x), y_2, \mathsf{Mer}[e_3](x))^{2^{e_*}}$

- 3n quadratic equations
- 3n equations of degree $\max(e_1, e_3) + 1$

Algebraic Degree Monomial Orders Gröbner Basis Attack Optimal Systems on AIM

Systems for AIM-V: 3n variables

$$\begin{aligned} x \cdot y_2 &= x^{2^{e_2}}, \\ x \cdot y_3 &= x^{2^{e_3}}, \end{aligned}$$

 $\mathsf{Lin}(\mathsf{Mer}[e_1](x), y_2, y_3) \cdot (x \oplus \mathsf{ct}) = \mathsf{Lin}(\mathsf{Mer}[e_1](x), y_2, y_3)^{2^{e_*}}$

- 6n quadratic equations
- 3n equations of degree $e_1 + 1$

Algebraic Degree Monomial Orders Gröbner Basis Attack Optimal Systems on AIM

Systems for AIM-V: 4n variables

$$x \cdot y_1 = x^{2^{e_1}}, \qquad x \cdot y_2 = x^{2^{e_2}}, \qquad x \cdot y_3 = x^{2^{e_3}},$$

 $\operatorname{Lin}(y_1, y_2, y_3) \cdot (x \oplus \operatorname{ct}) = \operatorname{Lin}(y_1, y_2, y_3)^{2^{e_*}}$

• 12n quadratic equations

Algebraic Degree	Monomial Orders	Gröbner Basis Attack 00000	XL Attack 00	Optimal Systems on AIM
-				

Optimal Systems on AIM

Scheme	#Var	Variables	Gröbner Basis		XL	
			$\overline{d_{reg}}$	Time	D	Time
AIM-I	n	z	51	300.8	52	244.8
	2n	x , y_2	22	214.9	14	150.4
	3n	x , y_1 , y_2	20	222.8	12	148.0
AIM-III	n	z	82	474.0	84	375.3
	2n	x , y_2	31	310.6	18	203.0
	3n	x , y_1 , y_2	27	310.8	15	194.1
AIM-V	n	z	100	601.1	101	489.7
	2n	x , y_2	40	406.2	26	289.5
	3n	x , y_2 , y_3	47	510.4	20	260.6
	4n	x , y_1 , y_2 , y_3	45	530.3	19	266.1