
The AIMer Signature Scheme

Version 2.1

Principal Submitter: Jooyoung Lee

� KAIST

� hicalf@kaist.ac.kr

Ó +82-10-8757-7831

� 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

Auxiliary Jihoon Cho

Submitter: Jincheol Ha

Seongkwang Kim

Jihoon Kwon

Byeonghak Lee

Joohee Lee

Sangyub Lee

Dukjae Moon

Mincheol Son

Hyojin Yoon

Inventors: Jincheol Ha
Seongkwang Kim

Jihoon Kwon
Byeonghak Lee

Joohee Lee

Jooyoung Lee

Sangyub Lee

Dukjae Moon

Mincheol Son

Developers/Owners: All listed submitters

Homepage: https://www.aimer-signature.org

Alternative Point of Contact: Seongkwang Kim

� Samsung SDS

� sk39.kim@samsung.com

Ó +82-10-9930-6241

� 56, Seongchon-gil, Seocho-gu, Seoul 06765, Republic of Korea

Friday 12th July, 2024

hicalf@kaist.ac.kr
https://www.aimer-signature.org
sk39.kim@samsung.com

Table of Contents

1 Introduction . 5
1.1 Overview of the Algorithm . 6
1.2 Notation . 7

2 Background . 8
2.1 Security Definitions . 8
2.2 MPC-in-the-Head Paradigm . 9
2.3 BN++ Proof System . 10
2.4 Fiat-Shamir Transform . 11
2.5 Gröbner Basis Attack . 12

3 Symmetric Primitive AIM2 . 13
3.1 Specification . 13
3.2 Design Rationale . 15

4 Specification of the AIMer Signature Scheme . 17
4.1 Basic Algorithms . 17

4.1.1 Field Representation . 17
4.1.2 Hash Functions . 17
4.1.3 GGM Tree Evaluation . 19
4.1.4 AIM2 Functions . 19

4.2 Signature Scheme . 19
4.2.1 Key Generation . 22
4.2.2 Signature Generation . 22
4.2.3 Signature Verification . 23

4.3 Recommended Parameters . 23
5 Formal Security Analysis . 26

5.1 EUF-CMA Security of AIMer in the Random Oracle Model 26
5.2 Information-Theoretic Security of AIM2 in the Random

Permutation Model . 33
6 Security Evaluation . 36

6.1 Summary of Expected Security Strength . 36
6.2 Soundness Analysis . 38
6.3 Known Attacks to AIM2 . 38

6.3.1 Brute-force Attack . 38
6.3.2 Algebraic Attacks . 39
6.3.3 Differential and Linear Cryptanalysis 43
6.3.4 Quantum Attacks . 45

6.4 Attacks in the Multi-User Setting . 48
6.5 Side-Channel Attacks . 49

7 Performance . 50
7.1 Description of the Benchmarking Environments 50
7.2 Key and Signature Sizes . 51
7.3 Timing Results . 52

3

7.4 Memory Usage . 54
8 Advantages and Limitations . 54

8.1 General . 54
8.2 Compatibility with Existing Protocols . 55

4

Change Log

v2.0 → v2.1

In this version, the updates are mainly related to the implementation. We up-
dated our implementations to be more friendly to PQClean project and run all
tests of PQClean test framework. We mergedReference C andOptimized C to
Reference C, and change the name AVX2 implementation to Optimized im-
plementation. We added mem opt C implementation for memory-constrained
devices, and aarch64 shake opt implementation which utilizes ARMAdvanced
SIMD instructions on SHAKE. Now aarch64 and aarch64 shake opt imple-
mentations can be compiled for ARM-based Apple SoCs (Apple M series). In
response to the recommendations of Bernstein in KpqC bulletin,1 we have ap-
plied following patches:

– Since the variables of patch-1-reveal, patch-7-commits, and patch-8-alpha
were public data, we have utilized crypto declassify function.

– patch-2-poly64: we replaced poly64 mul by poly64 mul s which contains all
the recommendation, and applied it to all the arithmetic operations related
to secret data.

– patch-3-htole: we replaced htole64 and ltohe64 with the recommended byte
computations, and removed portable endian.h file.

– patch-4-loadstore: we replaced load and store with loadu and storeu

in the AVX2 implementation.
– patch-5-square: we modified all implementations to use the recommended

code for square arithmetic in the Reference and mem opt implementa-
tions.

– patch-6-selfaddmask: we removed the selfaddmask function from all imple-
mentations.

– patch-9-initialize: we added the recommended initialization process in the
AVX2 implementation.

– Lastly, we have included TIMECOP results for all TIMECOP-supported
implementations.

v1.0 → v2.0

We have modified the core specification to enhance security, efficiency, and us-
ability. The main change is the update from AIM to AIM2, which mitigates the
analyses on AIM. We reduced the salt size by half without any security degrada-
tion. For usability, we introduced a message pre-hashing mechanism, and reduced
the number of parameter sets (and we renamed them).

From an implementation perspective, we newly implemented the reference
source code, improving readability. This version additionally supports the aarch64
architecture, reference C, optimized C, and AVX2 builds. We have removed the
OpenSSL dependency and optimized memory usage for all implementations.

1 https://groups.google.com/g/kpqc-bulletin/c/_Gb2n7ZwlTo

https://groups.google.com/g/kpqc-bulletin/c/_Gb2n7ZwlTo

5

These changes aim to provide a more readable, efficient, and versatile imple-
mentation framework for users and developers alike.

Editorial revisions have been made to align the documentation with the afore-
mentioned specification and implementation changes. We revised the EUF-CMA
security proof, security analysis, and performance figures. The specification be-
came more implementation-friendly as each specification has a link to its imple-
mentation.

v0.9 → v1.0

We integrated Commit and ExpandTape to a single hash function, improved the
matrix generation algorithm, and reduced the entropy requirement for the gen-
eration of root seeds for better performance. To enhance concrete security, we
added the domain separation mechanism to the hash functions.

1 Introduction

AIMer is a signature scheme which is obtained from a zero-knowledge proof of
preimage knowledge for a certain one-way function. AIMer consists of two parts:
a non-interactive zero-knowledge proof of knowledge (NIZKPoK) system, and a
one-way function. The security of both parts solely depends on the security of
the underlying symmetric primitives.

The NIZKPoK system in AIMer can be viewed as a customized version of the
BN++ proof system [KZ22]. BN++ is a NIZKPoK system based on the MPC-
in-the-Head (MPCitH) paradigm [IKOS07], which efficiently proves large-field
arithmetic. The difference between our system and BN++ is given as follows.

– Our system integrates Commit and ExpandTape to a single hash function. It
reduces a significant amount of signing and verification time without loss of
security in the random oracle model.

– Hash functions and extendable-output functions used in our system are
domain-separated for stronger concrete security.

– The size of salt is halved.
– The hash value of the message is precomputed to efficiently handle a long

message.
– Our system requires a smaller amount of randomness to generate the master

seeds (seedk) for each repetition.

The one-way function of AIMer in version 1.0 was AIM [KHS+23], which is a
tweakable one-way function dedicated to the BN++ system. AIM was designed to
have strong security against algebraic attacks producing short signatures when
combined with BN++. The AIM function fully exploits the optimization tech-
niques of BN++ using repeated multipliers for checking multiplication triples
and locally computed output shares to reduce the overall signature size.

However, recent studies have identified certain algebraic vulnerabilities in
AIM [LMOM23,ZWY+23]. The most powerful attack among them is a fast ex-
haustive search attack by Liu et al, which exploits the property that AIM allows

6

a low-degree system of equations in a moderate number of Boolean variables.
They demonstrated potential security degradation of up to 12 bits compared to
the existing analysis on the complexity of exhaustive search on AIM [KHSL24].

To mitigate such attacks, Kim et al. proposed a new symmetric primitive
AIM2 [KHSL24]. AIM2 has a similar structure with AIM except with minor
changes: it employs the inverse Mersenne S-boxes, which are the inverse func-
tions of Mersenne S-boxes. The inverse Mersenne S-boxes with higher exponents
make it harder to establish a low-degree system of equations in a moderate num-
ber of Boolean variables. Second, a distinct constant is added to the input to
each S-box, which makes it hard to establish a system of equations using a com-
mon variable fed to all the S-boxes. Overall, AIM2 provides stronger security
against recent attacks on AIM, at the cost of small performance overhead. In
AIMer version 2.0, we mount AIM2 as its symmetric primitive.

1.1 Overview of the Algorithm

The AIMer signature algorithm consists of key generation, signing, and verifica-
tion algorithms. To provide an intuitive understanding of the AIMer signature
scheme, we will briefly describe the three algorithms below. The detailed speci-
fication is given in Section 4.

Key Generation. The key generation is simply a computation of AIM2, which
proceeds as follows.

1. A tweak iv and a plaintext pt are sampled uniformly at random.
2. ct = AIM2(iv, pt) is computed.
3. The secret key is set to sk = (pt, iv, ct), and the corresponding public key is

defined as pk = (iv, ct).

Signing Algorithm. The signing algorithm is a virtual MPC simulation of
AIM2. The multiple parties involved in the MPC evaluation are not real partici-
pants, but a simulation by the signer (MPCitH). As both signing and verification
algorithms are non-interactive, random challenges are computed by hash func-
tions (via the Fiat-Shamir transform). The signing algorithm proceeds as follows.

1. The signer prepares the MPC simulation; it generates seeds for each party,
and shares of the input and intermediate values appearing in the computa-
tion of AIM2 from each seed. The signer commits each seed.

2. The signer computes a multiplication-checking protocol from a challenge.
3. The signer opens all the views except one determined by another challenge.

Verification Algorithm. The verification algorithm is a recomputation of
the signing algorithm to check whether the MPC simulation has been faithfully
executed or not. The verification algorithm mainly checks two steps: preparation
of the MPC simulation, and the multiplication-checking protocol. The verifica-
tion algorithm proceeds as follows.

7

1. The verifier recomputes shares of all the parties except the unopened one,
and computes the first challenge.

2. The verifier recomputes the multiplication-checking protocol, and computes
the second challenge.

3. The verifier checks whether the opened views of the MPC simulation are
consistent or not.

1.2 Notation

Unless stated otherwise, all logarithms are to the base 2. For two vectors a and
b over a finite field or two bit-strings a and b, their concatenation is denoted by
a ∥ b. For a positive integer n, we write [n] = {1, · · · , n}. We will write a ← b
to denote the assignment of b to a. For a set S, a → S denotes that a is added
to S as an element, and a ←$ S denotes that a is chosen uniformly at random
from S.

In this document, additions are usually operated on a binary field, in which
case additions are exclusive-OR (XOR). Nevertheless, when we want to empha-
size that an addition is actually XOR, we denote the addition by ⊕. In the
multiparty computation setting, x(i) denotes the i-th party’s additive share of
x, which implies that

∑
i x

(i) = x. We summarize some notations of parameters
and non-conventional notations in Table 1.

In this paper, index of every vector starts from 1 (not 0). When a vector is
multiplied to a matrix, the vector is interpreted as a column vector even if there
is no explicit transpose notation (⊤). For a vector vec, the notation vec[n] is
used to denote the n-th element of vec. For a vector vec, vec[a : b] denotes the
sub-vector of b− a+ 1 elements from vec[a] to vec[b] (both inclusive). For a
bit-string str, similar to vectors, we use str[n] and str[a : b] to denote n-th bit
of str and sub-string from bit-position a to b (both-inclusive), respectively. We
write bit-strings in hexadecimal format, with big-endian order. For example,

0x0603[1 : 8] = 1100 0000 0110 0000[1 : 8] = 0x03.

λ Security parameter
n Input/output bit-length of S-boxes in AIM2 (which is always same as λ)
ℓ Number of S-boxes in front of the linear layer in AIM2
τ Number of the parallel repetitions in NIZKPoK
N Number of the parties in NIZKPoK (which is always a power-of-two in ver. 2.0)

Table 1: The notation used in the document.

8

2 Background

2.1 Security Definitions

PRF Security. Let F : K×X → Y be a keyed function from X to Y with key
space K. A (probabilistic) adversary A against the PRF security of F makes a
certain number of queries F (k, x) where k ∈ K is chosen uniformly at random
from the key space and kept secret, and tries to distinguish F from a truly
random function. More formally, the advantage of A against the PRF security
of F is defined as

Advprf
F (A) :=

∣∣∣Pr[AF (k,·) = 1]− Pr[Ag(·) = 1]
∣∣∣ ,

where g denotes a truly random function that has been chosen uniformly at
random from the set of all possible functions from X to Y.
One-wayness. Given a function F : {0, 1}n → {0, 1}m and y ∈ {0, 1}m, the
goal of a (probabilistic) preimage-finding adversary A is to find x ∈ {0, 1}n such
that y = F (x). Formally, the advantage of A against the one-wayness of F is
defined as

Advowf
F (A) := Pr [x← A(y) ∧ F (x) = y] (1)

where y = F (z) for a random z ∈ {0, 1}n. This notion of oneway-ness will be
used in the security proof of the AIMer signature scheme.

For the proof of the one-wayness of AIM2, we will use the information-
theoretic notion of everywhere preimage resistance given in [RS04] by assuming
that AIM2 is based on public random permutations. We refer to Section 5.2 for
the formal definition of everywhere preimage resistance.

EUF-KO Security. The existential unforgeability of a signature scheme Π
under key-only attacks (EUF-KO) ensures that no probabilistic adversary A
is able to compute a valid signature on any message m without having access
to a signing oracle. In this model, the forging advantage of A against Π =
(KeyGen,Sign,Verify) is defined as

Adveuf-ko
Π (A) := Pr

[
Verify(pk,m, σ) = 1

∣∣∣∣ (pk, sk)← KeyGen(1λ)
(m,σ)← A(pk)

]
,

where λ is the security parameter.

EUF-CMA Security. The existential unforgeability of a signature scheme Π
under chosen message attacks (EUF-CMA) ensures that no probabilistic adver-
sary A is able to compute a valid signature on any message that has not been
signed during the attack, despite having observed the signatures on a certain
number of chosen messages. More formally, the forging advantage of A against
Π = (KeyGen,Sign,Verify) is defined as

Adveuf-cma
Π (A) := Pr

[
Verify(pk,m, σ) = 1
∧m is not signed before.

∣∣∣∣ (pk, sk)← KeyGen(1λ)
(m,σ)← ASign(sk,·)(pk)

]
,

where λ is the security parameter, and ASign(sk,·) implies that A has access to
the signing oracle with private key sk.

9

2.2 MPC-in-the-Head Paradigm

The MPC-in-the-Head (MPCitH) paradigm, proposed by Ishai et al. [IKOS07],
allows one to construct a zero-knowledge proof (ZKP) system from a multi-party
computation (MPC) protocol. Consider an MPC protocol where N parties col-
laborate to securely evaluate a function f on an input x with perfect correctness.
Suppose that the views of k parties leak no information on x. Then, one can build
a ZKP from the MPC protocol as follows.

1. The prover generates random secret shares x(1), . . . , x(N) such that x(1) +
· · ·+ x(N) = x, and assign them to N parties, say P1, . . . ,PN .

2. The prover simulates the MPC protocol “in her head” by simulating each
Pi, i = 1, . . . , N .

3. The prover commits to each party’s view which includes its random tape, the
secret input share, and the communicated messages from and to the party.
She sends the commitments to the verifier.

4. The prover possibly gets random challenges for MPC simulation from the
verifier when needed, and conducts local computations on each party. She
may repeat this step several times.

5. The prover completes the MPC simulation and hands over requested output
shares of the MPC protocol to the verifier.

Note that the verifier interactively joins the above procedure to provide random
challenges to the prover. After that, the verifier selects k parties and asks the
prover to open their views. Once the views are received, the verifier checks

1. if the opened views are consistent, i.e., the messages sent from and to a party
match and the commitments are correctly evaluated from the resulting views,
and

2. if the output recovered from the output share is y.

Since only k views are opened, no information on x is leaked from the revealed
views. Also, since the verifier opens the random views, any cheating adversary’s
winning probability is upper bounded by (N−k)/N . We fix k = N−1 throughout
this proposal.

The practicality of MPCitH is demonstrated by the ZKBoo scheme, the first
efficient MPCitH-based proof scheme proposed by Giacomelli et al. [GMO16].
One of the main applications of the MPCitH paradigm is to construct a post-
quantum signature. Picnic [CDG+17] is the first and the most famous signature
scheme based on the MPCitH paradigm; it combines an MPC-friendly block ci-
pher LowMC [ARS+15] and an MPCitH proof system called ZKB++, which is
an optimized variant of ZKBoo. Katz et al. [KKW18] proposed a new proof sys-
tem KKW by further improving the efficiency of ZKB++ with pre-processing,
and updated Picnic accordingly. The updated version of Picnic was the only
MPCitH-based scheme that advanced to the third round of the NIST PQC com-
petition. BBQ [dSGMOS19] and Banquet [BSGK+21] are AES-based signature
schemes, where BBQ employs the KKW proof system and Banquet improves
BBQ by injecting shares for intermediate states.

10

To fully exploit efficient multiplication over a large field in the Banquet proof
system, Dobraunig et al. [DKR+22] proposed MPCitH-friendly ciphers LS-AES
and Rain. They are substitution-permutation ciphers based on the inverse S-box
over a large field. This design strategy increases the efficiency of the resulting
MPCitH-based signature scheme, while the number of rounds should be carefully
determined by comprehensive analysis on any possible algebraic attack due to
their simple algebraic structures. Kales and Zaverucha [KZ22] proposed several
optimization techniques to further improve the efficiency of the Baum and Nof’s
proof system [BN20], and their variant is called BN++.

2.3 BN++ Proof System

In this section, we briefly review the BN++ proof system [KZ22], one of the
state-of-the-art MPCitH zero-knowledge protocols. The BN++ protocol will be
combined with our symmetric primitive AIM2 to construct the AIMer signature
scheme. At a high level, BN++ is a variant of the BN protocol [BN20] with
several optimization techniques applied to reduce the signature size.

Protocol Overview. The BN++ protocol follows the MPCitH paradigm [IKOS07].
In order to check C multiplication triples (xj , yj , zj = xj · yj)Cj=1 over a finite
field F in the multiparty computation setting with N parties, helping triples
((aj , bj)

C
j=1, c) are required, where aj ∈ F, bj = yj , and c =

∑C
j=1 aj · bj . Each

party holds secret shares of the multiplication triples (xj , yj , zj)
C
j=1 and the help-

ing triples ((aj , bj)
C
j=1, c). Then the protocol proceeds as follows.

– A prover is given random challenges ϵ1, · · · , ϵC ∈ F.
– For i ∈ [N], the i-th party locally sets α

(i)
1 , · · · , α(i)

C where α
(i)
j = ϵj ·x(i)

j +a
(i)
j .

– The parties open α1, · · · , αC by broadcasting their shares.
– For i ∈ [N], the i-th party locally sets

v(i) =

C∑
j=1

ϵj · z(i)j −
C∑

j=1

αj · b(i)j + c(i).

– The parties open v by broadcasting their shares and output Accept if v = 0.

The probability that there exist incorrect triples and the parties output Accept
in a single run of the above steps is upper bounded by 1/|F|.

Signature Size. By applying the Fiat-Shamir transform [DFM20], one can ob-
tain a signature scheme from the BN++ proof system. In this signature scheme,
the signature size is given as

6λ+ τ · (3λ+ λ · ⌈log2(N)⌉+M(C)),

where λ is the security parameter, τ is the number of parallel repetitions of the
multiplication checking protocol for reducing the soundness error, C is the num-
ber of multiplication gates in the underlying symmetric primitive, andM(C) =

11

(2C+1) · log2(|F|). In particular,M(C) has been defined so from the observation
that sharing the secret share offsets for (zj)

C
j=1 and c, and opening shares for

(αj)
C
j=1 occurs for each repetition, using C, 1, and C elements of F, respectively.

For more details, we refer to [KZ22].

Optimization Techniques. If multiplication triples use an identical multiplier
in common, for example, given (x1, y, z1) and (x2, y, z2), then the corresponding
α values can be batched to reduce the signature size. Instead of computing
α1 = ϵ1 · x1 + a1 and α2 = ϵ2 · x2 + a2, α = ϵ1 · x1 + ϵ2 · x2 + a is computed, and
v is defined as

v = ϵ1 · z1 + ϵ2 · z2 − α · y + c,

where c = a · y. This technique is called repeated multiplier technique. Our
symmetric primitive design allows us to take full advantage of this technique to
reduce the number of α values in each repetition of the protocol.

If the output of the multiplication zi can be locally generated from each
share, then the secret share offset is not necessarily included in the signature.

2.4 Fiat-Shamir Transform

The Fiat-Shamir transform [FS87] is a technique for taking an interactive proof
of knowledge and creating a non-interactive counterpart, or a digital signature
based on it. The core of the technique is to replace challenges from the verifier
by random oracle access which is realized by hashing of the transcript obtained
so far.

The Fiat-Shamir transform was originally targeted at a Σ-protocol, a three-
round interactive proof of knowledge. Let R be a relation such that, for a given
x, it is difficult to find an w such that R(x,w) = 1. Given public R and x, the
value w such that R(x,w) = 1 becomes the secret information that a prover P
wants to prove the knowledge of to the verifier V. Then, a Σ-protocol proceeds
as follows.

1. Commitment: a random number r is generated, committed to by the
prover, and sent to the verifier.
– P

com−−−→ V, where com = Commit(r).
2. Challenge: on receiving the commitment, the verifier sends a random chal-

lenge ch to the prover.

– P
ch←−− V.

3. Response: the prover creates an appropriate response corresponding to the
challenge.
– P

res−−−→ V, where res = Response(w, r, ch).

Then, the verifier checks the validity of the response together with com and
ch. This Σ-protocol is transformed into a non-interactive version, by replacing
the challenge sent by the verifier by a random oracle access, using the previous
transcript (x, com). Denoting the random oracle as RO, the challenge step of
the above procedure is replaced by ch ← RO(x, com). This approach can be
extended to multi-round proofs. The security loss is known to be linear in the
number of attacker’s queries to the random oracle [AFK22].

12

2.5 Gröbner Basis Attack

The Gröbner basis attack aims to solve systems of equations by determining their
Gröbner basis through a structured approach. The process unfolds in several
stages:

1. Calculation of a Gröbner basis using the graded reverse lexicographic (grevlex)
order.

2. Conversion of the basis into lexicographic (lex) order by reordering terms.
3. Identification and finding a solution of a univariate polynomial equation

within the basis.
4. Substitution of the solution back into the basis, with iterative applications

of the previous step for further solutions.

A system’s Gröbner basis in lex order always contains a univariate polynomial
when the system has a finite number of solutions within its algebraic closure.
When a single variable of the polynomial is replaced by a concrete solution, the
Gröbner basis still remains a Gröbner basis of the “reduced” system, allowing
one to obtain a univariate polynomial again for the next variable. For a com-
prehensive understanding of Gröbner basis calculation, the reader is directed
to [SS21].

The resilience of a cryptographic system against the Gröbner basis attack
primarily depends on the complexity of the first step, which is computing the
Gröbner basis in grevlex order, typically using the F4/F5 algorithm or its vari-
ants [Fau99,Fau02]. This complexity can be estimated through the system’s
degree of regularity [BFS04]. Consider a system of m homogeneous equations
{fi(x1, . . . , xn) = 0}mi=1 in n Boolean variables. Let di denote the degree of fi
for i = 1, 2, . . . ,m. Assuming that almost all polynomial sequences are semi-
regular [Frö85], then the degree of regularity can be estimated for overdeter-
mined systems (m > n) by the smallest degree of the terms with non-positive
coefficients appearing in the Hilbert series as follows.

(1 + z)n∏m
i=1(1 + zdi)

.

For nonhomogeneous equations, the degree of regularity comes from the following
Hilbert series obtained by homogenization [BFSS13].

(1 + z)n

(1− z)
∏m

i=1(1 + zdi)
. (2)

Given the degree of regularity dreg, the complexity is(
n

dreg

)ω

ignoring the constant factor, where ω is the linear algebra constant (2 ≤ ω ≤
3). Combined with the hybrid approach of guessing some variables, the time

13

complexity of the hybrid Gröbner basis attack is given by

min
k

2k ·
(

n− k

dreg(n, k)

)ω

(3)

where dreg(n, k) denotes the minimal degree from the Hilbert series after ad-
justing for guessed variables. This formula with ω = 2 provides a conservative
estimate of the complexity, and we use this formula to estimate the complexity
in this paper.

3 Symmetric Primitive AIM2

3.1 Specification

AIM2 is designed to be a “tweakable” one-way function so that it offers multi-
target one-wayness. Given input/output size n and an (ℓ+1)-tuple of exponents
(e1, . . . , eℓ, e∗) ∈ Zℓ+1, AIM2 : {0, 1}n × F2n → F2n is defined by

AIM2(iv, pt) = Mer[e∗] ◦ Lin[iv] ◦Mer[e1, . . . , eℓ]
−1 ◦ AddConst(pt)⊕ pt

where each function will be described below. See Figure 1 for the pictorial de-
scription of AIM2 with ℓ = 3.

Mer[e1]
−1

Mer[e2]
−1

Mer[e3]
−1

Linpt

γ1

γ2

γ3

Mer[e∗] ct

XOF[iv]

Fig. 1: The AIM2-V one-way function with ℓ = 3. The input pt (in red) is the
secret key of the signature scheme, and (iv, ct) (in blue) is the corresponding
public key.

Non-linear Components. AIM2 uses two types of S-boxes: Mersenne S-box
Mer[e], and its inverseMer[e]−1. These two S-boxes are defined by exponentiation

14

over a large field as follows. For x ∈ F2n ,

Mer[e](x) = x2e−1,

Mer[e]−1(x) = xē where ē = (2e − 1)−1 mod 2n − 1

for some e. The exponents e in AIM2 are selected for Mer[e]−1 to have 3n
quadratic equations. We remark that the exponents e are chosen such that
gcd(e, n) = 1, and hence the inverse exponent ē is well-defined. As an exten-
sion, Mer[e1, . . . , eℓ]

−1 : Fℓ
2n → Fℓ

2n is defined by

Mer[e1, . . . , eℓ]
−1(x1, . . . , xℓ) = Mer[e1]

−1(x1)∥ . . . ∥Mer[eℓ]
−1(xℓ).

Linear Components. AIM2 includes three types of linear components: con-
stant addition, an affine layer, and feed-forward. For fixed constants γ1, . . . , γℓ,
AddConst : F2n → Fℓ

2n is defined by

AddConst(x) = (x+ γ1)∥ . . . ∥(x+ γℓ)

where the constants are defined in Table 2.

AIM2-I
γ1 0x243f6a88 85a308d3 13198a2e 03707344

γ2 0xa4093822 299f31d0 082efa98 ec4e6c89

AIM2-III
γ1 0x452821e6 38d01377 be5466cf 34e90c6c c0ac29b7 c97c50dd

γ2 0x3f84d5b5 b5470917 9216d5d9 8979fb1b d1310ba6 98dfb5ac

AIM2-V

γ1 0x2ffd72db d01adfb7 b8e1afed 6a267e96 ba7c9045 f12c7f99 24a19947 b3916cf7

γ2 0x0801f2e2 858efc16 636920d8 71574e69 a458fea3 f4933d7e 0d95748f 728eb658

γ3 0x718bcd58 82154aee 7b54a41d c25a59b5 9c30d539 2af26013 c5d1b023 286085f0

Table 2: Constants γ1, . . . , γℓ in AddConst are written in hexadecimal. These
constants are taken from the numbers below the decimal point of the π ratio.

The affine layer in AIM2 consists of multiplication by an n×ℓn random binary
matrix Aiv and addition by a random constant biv ∈ Fn

2 . The matrix

Aiv =
[
Aiv,1

∣∣ . . . ∣∣Aiv,ℓ

]
∈ (Fn×n

2)ℓ

is composed of ℓ random invertible matrices Aiv,i. The matrix Aiv and the vector
biv are generated by an extendable-output function (XOF) with the initial vector
iv. Each matrix Aiv,i can be equivalently represented by a linearized polynomial

Liv,i on F2n . For x = (x1, . . . , xℓ) ∈ (F2n)
ℓ
,

Lin[iv](x) =
∑

1≤i≤ℓ

Liv,i(xi)⊕ biv.

15

By abuse of notation, we will write Ax to denote
∑

1≤i≤ℓ Liv,i(xi). Feed-forward
operation, which is addition by the input itself, makes the entire function non-
invertible.

Recommended Parameters. Table 3 describes the recommended sets of pa-
rameters for λ ∈ {128, 192, 256}. The irreducible polynomials for extension fields
F2128 , F2192 , and F2256 are as follows.

– F2128 : f(X) = X128 +X7 +X2 +X + 1,
– F2192 : f(X) = X192 +X7 +X2 +X + 1,
– F2256 : f(X) = X256 +X10 +X5 +X2 + 1.

Scheme λ n ℓ e1 e2 e3 e∗

AIM2-I 128 128 2 49 91 - 3

AIM2-III 192 192 2 17 47 - 5

AIM2-V 256 256 3 11 141 7 3

Table 3: Recommended sets of parameters of AIM2.

3.2 Design Rationale

Choice of Field. When a symmetric primitive is built upon field operations,
the field is typically binary since bitwise operations are cheap in most of mod-
ern architectures. However, when the multiplicative complexity of the primitive
becomes a more important metric for efficiency, it is hard to generally specify
which type of field has merits with respect to security and efficiency.

Focusing on a primitive for MPCitH-style zero-knowledge protocols, a primi-
tive over a large field generally requires a small number of multiplications, leading
to shorter signatures. However, any primitive operating on a large field of a large
prime characteristic might permit algebraic attacks since the number of variables
and the algebraic degree will be significantly limited for efficiency reasons. On
the other hand, binary extension fields enjoy both advantages from small and
large fields. In particular, matrix multiplication is represented by a polynomial
of high algebraic degree without increasing the proof size.

Algebraically Sound S-boxes. In an MPCitH-style zero-knowledge proto-
col, the proof size of a circuit is usually proportional to the number of nonlinear
operations in the circuit. In order to minimize the number of multiplications,
one might introduce intermediate variables for some wires of the circuit. For ex-
ample, the inverse S-box (S(x) = x−1) has high (bitwise) algebraic degree n−1,
while it can be simply represented by a quadratic equation xy = 1 by letting the
output from the S-box be a new variable y. When an S-box is represented by a

16

quadratic equation of its input and output, we will say it is implicitly quadratic.
In particular, we consider implicitly quadratic S-boxes which are represented by
a single multiplication over F2n . This feature makes the proof size short and
mitigates algebraic attacks at the same time.

The inverse S-box is one of the well-studied implicitly quadratic S-boxes. The
inverse S-box has been widely adopted to symmetric ciphers due to its nice cryp-
tographic properties [DR02,AIK+01,SSA+07]. It is invertible, is of high-degree,
and has good enough differential uniformity and nonlinearity. Recently, it has
been used in symmetric primitives for advanced cryptographic protocols such as
multiparty computation and zero-knowledge proof [GKR+21,GLR+20,DKR+22].

Meanwhile, the inverse S-box has one minor weakness; a single evaluation of
the n-bit inverse S-box as a form of xy = 1 produces 5n−1 linearly independent
quadratic equations over F2 [CDG06]. The complexity of an algebraic attack is
typically bounded (with heuristics) by the degree and the number of equations,
and the number of variables. In particular, an algebraic attack is more efficient
with a larger number of equations, while this aspect has not been fully considered
in the design of recent symmetric ciphers based on algebraic S-boxes. When the
number of rounds is small, this issue might be critical to the overall security of
the cipher. For more details, see Section 6.3.2.

With the above observation, we tried to find an invertible S-box of high-
degree which is moderately resistant to differential/linear cryptanalysis as well
as implicitly quadratic, and producing only a small number of quadratic equa-
tions. Since our attack model does not allow multiple queries to a single instance
of AIM2, we allow a relaxed condition on the DC/LC resistance, not being neces-
sarily maximal. As a family of S-boxes that beautifully fit all the conditions, we
choose a family of Mersenne S-boxes; they are exponentiation by Mersenne num-
bers 2e − 1 such that gcd(n, e) = 1, are invertible, are of high-degree, need only
one multiplication for its proof, produce only 3n Boolean quadratic equations
with its input and output, and provide moderate DC/LC resistance. Further-
more, when the implicit equation xy = x2e of a Mersenne S-box is computed
in the BN++ proof system, it is not required to broadcast the output share
since the output of multiplication x2e can be locally computed from the share
of x. AIM2 uses Mersenne S-boxes in the forward and backward directions. The
inverse Mersenne S-boxes enjoy the same algebraic properties as Mersenne S-
boxes, while they result in a harder polynomial system as a whole.

Repetitive Structure. The efficiency of the BN++ proof system partially
comes from the optimization technique using repeated multipliers. When a mul-
tiplier is repeated in multiple equations to prove, the proof can be done in a
batched way, reducing the overall signature size. In order to maximize the ad-
vantage of repeated multipliers, we put S-boxes at the first round in parallel
and an additional S-box at the second round with feed-forward to its output to
make the implicit equations from the S-boxes share the same multiplier pt (with
constant differences).

Affine Layer Generation. The main advantage of using binary affine layers
in large S-box-based constructions is to increase the algebraic degree of equations

17

over the large field. Multiplication by a random n × n binary matrix can be
represented as

n−1∑
i=0

aix
2i = a0x+ a1x

21 + a2x
22 + · · ·+ an−1x

2n−1

where a0, a1, . . . , an−1 ∈ F2n . Similarly, our design uses a random affine map
from Fℓn

2 to Fn
2 . In order to mitigate multi-target attacks (in the multi-user

setting), the affine map is uniquely generated for each user; each user’s iv is fed
to an XOF, generating the corresponding linear layer.

4 Specification of the AIMer Signature Scheme

4.1 Basic Algorithms

Before providing the detailed specifications of the AIMer signature scheme, we
introduce the foundational algorithms that underpin the signature scheme. In
the forthcoming sections, we provide detailed algorithmic descriptions of the
conversion processes for inputs and outputs, the exact functionalities of hash
functions, and various auxiliary functions that play crucial roles in our signature
scheme.

4.1.1 Field Representation

Many variables in AIMer are considered to be elements of F2n , thus they need
to be converted to bitstrings to be used as inputs/outputs of hash functions,
and to be used as inputs/outputs of the linear layer of AIM2. The finite field is
defined as F2n = F2[X]/f(X) where f(X) is the irreducible polynomial defined
in Section 3.1. The conversions from an element in F2n to a vector or a bitstring
are defined as follows.

{0, 1}n ←→ F2n ←→ Fn
2

a1∥ . . . ∥an ↔
∑

i∈[n] ai ·Xi−1 ↔ (a1, . . . , an)
⊤

For example, a bitstring 0xA0 0 . . . 0︸ ︷︷ ︸
28

01 represented in hexadecimal form can

be converted into X127 +X125 + 1 in F2128 . In our specification, we sometimes
refer to elements of F2n as elements of Fn

2 or {0, 1}n depending on the context.

4.1.2 Hash Functions

All of hash functions are instantiated using SHAKE128 if λ = 128, and SHAKE256
if λ ∈ {192, 256} [NIS15]. To distinguish between domains, we hash the input
with a single-byte prefix, which is the same as the number i in the subscript of

18

Hi. For example, H0 uses 0 as the domain separation prefix. Since there are field
elements, integers, and tuples in the inputs and outputs of hash functions, we
apply the following rules to them.

– For the field elements in inputs and outputs of hash functions, we use con-
version between field elements and n-bit strings as we described in 4.1.1.

– For integers in the inputs of hash functions, we use the standard byte rep-
resentation as they always fit in a byte (i.e. from 0 to 255).

– For tuples used as input/output of hash functions, we convert each element
to/from a string and concatenate/split them in ascending order.

For example, let H̄7 : (F2n)
τ×[N]→ (F2n)

ℓ be a domain-separated hash function
with prefix 7. Then,

H̄7

(
(ak)k∈[τ], 255

)
= (tape[1 : n], . . . , tape[(ℓ− 1)n+ 1 : ℓn])

where
tape = SHAKE(0x07 ∥ a1 ∥ · · · ∥ aτ ∥ 0xFF)[1 : ℓn].

The list of specific functions used in AIMer is as follows.

– H0: {0, 1}n×F2n×{0, 1}∗ → {0, 1}2λ, hash function for message pre-hashing,
domain separation prefix is 0.

– H1: {0, 1}2λ×{0, 1}λ× (({0, 1}2λ)N ×F2n × (F2n)
ℓ×F2n)

τ → {0, 1}2λ, hash
function for generating challenge hash h1, domain separation prefix is 1.

– H2: {0, 1}2λ × {0, 1}λ × ((F2n)
N × (F2n)

N)τ → {0, 1}2λ, hash function for
generating challenge hash h2, domain separation prefix is 2.

– H3: F2n ×{0, 1}2λ ×{0, 1}λ → {0, 1}λ × ({0, 1}λ)τ , hash function for gener-
ating salt and root seeds, domain separation prefix is 3.

– H4: {0, 1}λ × {0, . . . , τ − 1} × {0, . . . , N − 1} × {0, 1}λ → ({0, 1}λ)2, hash
function for expanding seed trees, domain separation prefix is 4.

– H5: {0, 1}λ × {0, . . . , τ − 1} × {0, . . . , N − 1} × {0, 1}λ → {0, 1}2λ × F2n ×
(F2n)

ℓ × F2n × F2n , hash function for committing and expanding seeds, do-
main separation prefix is 5.

– ExpandH1: {0, 1}2λ → ((F2n)
ℓ+1)τ , hash function for expanding challenge

hash h1, no domain separation prefix.

– ExpandH2: {0, 1}2λ → [N]τ , hash function for expanding challenge hash h2,
no domain separation prefix. Note that this function is the only one that use
integers as outputs. Following is the detailed definition.

ExpandH2(h2) = (̄i1, . . . , īτ)

where
īk = (SHAKE(h2)[8k − 7 : 8k] mod N − 1) + 1

for k ∈ [τ].

– ExpandIV: {0, 1}n → {0, 1}ℓn2+n, hash function for generating linear compo-
nents of AIM2 from given iv, no domain separation prefix.

19

Note that ExpandH1 and ExpandH2 are not required to be domain-separated
since they just expand the output of other hash functions. Also, since the input
of ExpandIV is of bit-length n, there cannot be an collision on inputs to ExpandIV
and inputs to other hash functions.

4.1.3 GGM Tree Evaluation

In AIMer, GGM Tree [GGM86] is used to generate and publicize a set of seeds
from a master seed while a punctured seed is unknown to the verifier. The GGM
tree uses H4 as an inner pseudorandom generator. There are three following
algorithms related with evaluation of the GGM tree.

– ExpandTree: {0, 1}λ×[τ]×{0, 1}λ → ({0, 1}λ)2N−1, tree expanding algorithm
with the salt, repetition index, and root seed.

– RevealAllBut: ({0, 1}λ)2N−1 × [N]→ ({0, 1}λ)log2 N , algorithm for reveal all
but one seeds.

– ReconstructSeedTree: ({0, 1}λ)log2 N × [τ]× [N]→ ({0, 1}λ)N , recompute all
but one seeds. The seed of challenged party is filled with dummy bits.

The detailed specifications are in Figure 2.

4.1.4 AIM2 Functions

AIM2 is the symmetric primitive which is zero-knowledge proved in AIMer. AIM2
is computed in a plain manner in the AIM2 algorithm for key generation, and
computed in a secret-shared manner in the AIM2 MPC for signing and verifica-
tion. Generally, matrix multiplication can be performed more efficiently if the
matrix is provided in its transposed form. Consequently, the GenerateLinear al-
gorithm in AIMer is deliberately designed to directly produce matrices in their
transposed form.

– GenerateLinear: {0, 1}λ → (Fn×n
2)ℓ × Fn×1

2 , generate the linear components
in AIM2.

– AIM2: {0, 1}λ × {0, 1}n → {0, 1}n, the AIM2 one way function.

– AIM2 MPC: (Fn×n
2)ℓ×Fn

2 ×F2n × (F2n)
ℓ → (F2n ×F2n)

ℓ+1, MPC simulation
of AIM2.

The detailed specifications are in Figure 3.

4.2 Signature Scheme

The AIMer signature scheme Π = (KeyGen,Sign,Verify) consists of key genera-
tion, signing, and verification algorithms.

– KeyGen(1λ) → (sk, pk) : Sample uniform random pt ←$ F2n , and iv ←$

{0, 1}n. Compute ct ← AIM2(iv, pt) as described in Section 3, and set the
public key pk ← (iv, ct) ∈ {0, 1}n×F2n and the private key sk ← (pt, iv, ct) ∈
F2n × {0, 1}n × F2n .

20

ExpandTree(salt, k, seed)

1 Initialize tree: nodes← (0λ)2N−1.
2 Set the root seed: nodes[1]← seed.
3 for i = 1, . . . , N − 1 do
4 nodes[2i], nodes[2i+ 1]← H4(salt, k − 1, i, nodes[i])

5 Output nodes.

RevealAllBut(nodes, ī)

1 Initialize path: path← (0λ)logN .
2 j ← N − 1 + ī.
3 for d = 1, . . . , logN do
4 Copy the sibling node: path[d]← nodes[j ⊕ 1]
5 Move to parent node: j ← ⌊j/2⌋
6 Output path.

ReconstructSeedTree(path, k, ī)

1 Initialize tree: nodes← (0λ)2N−1.
2 j ← N − 1 + ī.
3 for d = 1, . . . , logN do
4 nodes[j ⊕ 1]← path[d]

// Expand parital tree

5 for u = 0, . . . , d− 2 do
6 for v = 0, . . . , 2u − 1 do
7 w ← 2u(j ⊕ 1) + v
8 nodes[2w], nodes[2w + 1]← H4(salt, k − 1, w, nodes[w])

9 Move to parent: j ← ⌊j/2⌋
10 Output nodes[N : 2N − 1].

Fig. 2: Algorithms for GGM tree evaluation.

21

GenerateLinear(iv)

1 Initialize linear components:
2 for j ∈ [ℓ], Lj ← 0n×n.
3 for j ∈ [ℓ], Uj ← 0n×n.
4 b← 0n

5 tape← ExpandIV(iv).
6 for j ∈ [ℓ] do
7 for r ∈ [n] do
8 for c ∈ [n] do
9 if c < r then

10 Set Lj [c][r]← tape[(j − 1)n2 + (r − 1)n+ c].
11 else if c = r then
12 Set Lj [c][r]← 1.
13 Set Uj [c][r]← 1.

14 else
15 Set Uj [c][r]← tape[(j − 1)n2 + (r − 1)n+ c].

16 Set Aj ← Lj · Uj

17 for r ∈ [n], b[r]← tape[ℓn2 + r].
18 Output ((Aj)j∈[ℓ], b).

AIM2(iv, pt)

1 Sample linear components: ((Aiv.j)j∈[ℓ], biv)← GenerateLinear(iv).
2 t∗ ← biv
3 for j ∈ [ℓ] do
4 tj ← Mer[ej]

−1(pt+ γj).
5 t∗ ← t∗ +Aj · tj .
6 ct← Mer[e∗](t∗) + pt
7 Output ct.

AIM2 MPC((Aj)j∈[ℓ], b, ct, (t
(·)
j)j∈[ℓ]) - Run the MPC simulation

1 for j ∈ [ℓ] do

2 Set x
(·)
j ← t

(·)
j ;

3 Set z
(·)
j ← (x

(·)
j)2

ej
+ γj · x(·)

j .

4 Set x
(·)
ℓ+1 ←

∑
j∈[ℓ] Aj · x(·)

j + b.

5 Set z
(·)
ℓ+1 ← (x

(·)
ℓ+1)

2e∗ + ct · x(·)
ℓ+1.

6 Output (x
(·)
j , z

(·)
j)j∈[ℓ+1].

Fig. 3: Algorithms used for AIM2 evaluation.

22

– Sign(sk,m)→ σ : Take as input a private key sk = (pt, iv, ct) and a message
m ∈ {0, 1}∗, and compute the zero-knowledge proof π for the AIM2 one-
way function circuit using m as a part of the input to the challenge hash as
described in Algorithm 8. Output the corresponding signature σ ← π where
|σ| = (5 + (log2 N + ℓ+ 5)τ)λ

– Verify(pk,m, σ)→ Accept or Reject : Take as input a public key pk = (iv, ct),
a message m and a signature σ and conduct the verification of NIZKPoK
for the AIM2 one-way function circuit as described in Algorithm 9. Output
either Accept or Reject according to the verification result of the ZKP.

Each algorithm will be described in detail in the following sections.

4.2.1 Key Generation

The key generation algorithm KeyGen(1λ) initiated by generating two random λ-
bit sequences, pt and iv. The secret key pt is encrypted under the AIM2 function
using iv as the initialization vector, resulting in the ciphertext ct. Consequently,
the algorithm sets the secret key sk as a tuple comprising pt, iv, and ct, and
constructs the public key pk as a tuple comprising iv and ct. The final output of
the algorithm is the key pair (sk, pk) of the AIMer signature scheme.

Algorithm 7: KeyGen(1λ) - AIMer signature scheme, key generation
algorithm

1 Sample pt←$ {0, 1}λ.
2 Sample iv←$ {0, 1}λ.
3 Set ct← AIM2(iv, pt).
4 Set sk ← (pt, iv, ct), pk ← (iv, ct).
5 Output (sk, pk).

4.2.2 Signature Generation

The signing algorithm consists of five phases as commented in Algorithm 8.

Phase 1: Committing to the seeds and the execution views of the
parties. It first pre-hash the message, and computes an instance of AIM2 using
the initial vector. Next, together with sampling per-signature randomness, it
generates the salt and the root seeds. After that, for each parallel execution, it
does the following.

1. It compute the parties’ seeds as leaves of a binary tree from the root seed of
each repetition.

2. It commits to each party’s seed and expands random tape.
3. It prepares for the multi-party computation among the N parties using the

parties’ seeds, by generating secret shares of the multiplication triples for
each S-box.

23

Phase 2: Challenging the checking protocol. It then computes the
first challenge hash and expands it to the first challenge for the multiplication
checking protocol in BN++.

Phase 3: Committing to the simulation of the checking protocol.
It computes and outputs the broadcast values for the multiplication checking
protocol of BN++.

Phase 4: Challenging the views of the MPC protocol. It computes
the second challenge hash and expands it to the second challenge for choosing
unopened views.

Phase 5: Opening the views of the MPC and checking protocols. It
collects the seeds to open the views of N − 1 parties for each repetition, and
outputs a signature.

4.2.3 Signature Verification

The verification algorithm takes as input (pk = (iv, ct),m, σ), and outputs Accept
or Reject. We refer to Algorithm 9 for the detailed description.

First, given a public key, it computes the hash value of the message and
an instance of AIM2. From the signature, it expands hash values to obtain the
challenges in Phase 2 and 4 of the signing algorithm.

Recomputation of Phase 1 and 2. It does the following for each parallel
repetition:

– Recomputes random seeds for disclosed parties, and re-generate commit-
ments and tapes.

– From the commitments and tapes, recomputes σ1 and the first challenge
hash.

Recomputation of Phase 3 and 4. For each parallel repetition, it simulates
the multiplication checking protocol for each disclosed party. It recomputes the
broadcast values for each disclosed party. Also, it computes the remaining share

of the broadcast value v
(̄ik)
k . Finally, it recomputes σ2 and the challenge hash.

Comparison of the hash values. It compares the hash values in the input
signature and those obtained from the recomputation. It outputs Accept only if
both hash values agree, and outputs Reject otherwise.

4.3 Recommended Parameters

For security levels L1, L3, and L5, recommended sets of parameters are given
in Table 4. For each value of security parameter λ, the corresponding sets of
parameters are expected to provide λ-bit security against all classical attacks,
and λ/2-bit security against quantum attacks.

24

Algorithm 8: Sign(sk = (pt, iv, ct),m) - AIMer signature scheme, sign-
ing algorithm.

// Phase 1: Committing to the seeds and the execution views.

1 Compute the hash of the message: µ← H0(iv, ct,m)
2 Compute the first ℓ S-boxes’ outputs: for j ∈ [ℓ], tj ← Mer[ej]

−1(pt+ γj)

3 Derive the AIM2 linear components (Aiv,j)j∈[ℓ] ∈ (Fn×n
2)ℓ and biv ∈ Fn

2 :
((Aiv,j)j∈[ℓ], biv)← GenerateLinear(iv)

4 Sample randomness: ρ←$ {0, 1}λ (ρ← 0λ for deterministic signature)
5 Compute salt and root seeds: (salt, (seedk)k∈[τ])← H3(pt, µ, ρ).
6 for each repetition k ∈ [τ] do
7 Compute parties’ seeds:
8 nodesk ← ExpandTree(salt, k, seedk);

9 seed
(1)
k , . . . , seed

(N)
k ← nodesk[N : 2N − 1].

10 for each party i ∈ [N] do
11 Commit to the seed and expand random tape:

(com
(i)
k , pt

(i)
k , (t

(i)
k,j)j∈[ℓ], a

(i)
k , c

(i)
k)← H5(salt, k − 1, i− 1, seed

(i)
k).

12 Compute offsets and adjust last shares:

13 ∆ptk ← pt−
∑

i pt
(i)
k , pt

(N)
k ← pt

(N)
k +∆ptk;

14 for j ∈ [ℓ], ∆tk,j ← tj −
∑

i t
(i)
k,j , t

(N)
k,j ← t

(N)
k,j +∆tk,j ;

15 ∆ck ←
∑

i a
(i)
k · pt−

∑
i c

(i)
k , c

(N)
k ← c

(N)
k +∆ck.

16 for each party i ∈ [N] do
17 Set b← biv if i = N or set b← 0n otherwise.
18 Run the MPC simulation and prepare the multiplication check inputs:

(x
(i)
k,j , z

(i)
k,j)j∈[ℓ+1] ← AIM2 MPC((Aiv,j)j∈[ℓ], b, ct, (t

(i)
k,j)j∈[ℓ])

19 Set σ1 ← (salt, ((com
(i)
k)i∈[N],∆ptk, (∆tk,j)j∈[ℓ],∆ck)k∈[τ]).

// Phase 2: Challenging the multiplication checking protocol.

20 Compute challenge hash: h1 ← H1(µ, σ1).
21 Expand hash: ((ϵk,j)j∈[ℓ+1])k∈[τ] ← ExpandH1(h1) where ϵk,j ∈ F2n .

// Phase 3: Committing to the multiplication check results.

22 for each repetition k do
23 Simulate the multiplication checking protocol as in Section 2.3:

24 for i ∈ [N], α
(i)
k ← a

(i)
k +

∑
j∈[ℓ+1] x

(i)
k,j · ϵk,j .

25 Set αk =
∑

i∈[N] α
(i)
k .

26 for i ∈ [N], v
(i)
k ← c

(i)
k +

∑
j∈[ℓ+1] z

(i)
k,j · ϵk,j − αk · pt(i)k .

27 Set σ2 ← (salt, ((α
(i)
k)i∈N , (v

(i)
k)i∈[N])k∈[τ]).

// Phase 4: Challenging the views of the MPC protocol.

28 Compute challenge hash: h2 ← H2(h1, σ2).
29 Expand hash: (̄ik)k∈[τ] ← ExpandH2(h2) where īk ∈ [N].

// Phase 5: Opening the views of the MPC and checking protocols.

30 for each repetition k do
31 pathk ← RevealAllBut(nodesk, īk).

32 Output σ ←
(
salt, h1, h2, (pathk, com

(̄ik)
k ,∆ptk, (∆tk,j)j∈[ℓ],∆ck, α

(̄ik)
k)k∈[τ]

)
.

25

Algorithm 9: Verify(pk = (iv, ct),m, σ) - AIMer signature scheme, ver-
ification algorithm.

1 Parse σ as

(
salt, h1, h2,

(
pathk, com

(̄ik)
k ,∆ptk,∆ck, (∆tk,j)j∈[ℓ], α

(̄ik)
k

)
k∈[τ]

)
.

2 Compute the hash value of the message: µ← H0(iv, ct,m)

3 Derive the AIM2 linear components (Aiv,j)j∈[ℓ] ∈ (Fn×n
2)ℓ and biv ∈ Fn

2 :
((Aiv,j)j∈[ℓ], biv)← GenerateLinear(iv)

4 Expand hashes:
((ϵk,j)j∈[ℓ+1])k∈[τ] ← ExpandH1(h1) and (̄ik)k∈[τ] ← ExpandH2(h2).

5 for each repetition k ∈ [τ] do
6 Compute seeds except challenged one:

(seed
(1)
k , . . . , seed

(N)
k)← ReconstructSeedTree(pathk, k, īk)

7 for each party i ∈ [N] \ {̄ik} do
8 Recompute

(com
(i)
k , pt

(i)
k , (t

(i)
k,j)j∈[ℓ], a

(i)
k , c

(i)
k)← H5(salt, k − 1, i− 1, seed

(i)
k).

9 if i = N then
10 Adjust last share:

11 pt
(i)
k ← pt

(i)
k +∆ptk;

12 for j ∈ [ℓ], t
(i)
k,j ← t

(i)
k,j +∆tk,j ;

13 c
(i)
k ← c

(i)
k +∆ck

14 Set b← biv if i = N or set b← 0n otherwise.
15 Run the MPC simulation and prepare the multiplication check inputs:

(x
(i)
k,j , z

(i)
k,j)j∈[ℓ+1] ← AIM2 MPC((Aiv,j)j∈[ℓ], b, ct, (t

(i)
k,j)j∈[ℓ])

16 Simulate the multiplication checking protocol as in Section 2.3:

17 for i ∈ [N] \ {̄ik}, α(i)
k ← a

(i)
k +

∑
j∈[ℓ+1] x

(i)
k,j · ϵk,j .

18 Set αk =
∑

i∈[N] α
(i)
k .

19 for i ∈ [N] \ {̄ik}, v(i)k ← c
(i)
k +

∑
j∈[ℓ+1] z

(i)
k,j · ϵk,j − αk · pt(i)k .

20 Set v
(̄ik)
k = 0−

∑
i∈[N]\{īk}

v
(i)
k .

21 Set σ1 ←
(
salt,

(
(com

(i)
k)i∈[N],∆ptk,∆ck, (∆tk,j)j∈[ℓ]

)
k∈[τ]

)
.

22 Set h′
1 ← H1(µ, σ1).

23 Set σ2 ←
(
salt, ((α

(i)
k , v

(i)
k)i∈[N])k∈[τ]

)
24 Set h′

2 = H2(h
′
1, σ2).

25 Output Accept if h1 = h′
1 and h2 = h′

2.
26 Otherwise, output Reject.

26

Security Parameters λ n ℓ e1 e2 e3 e∗ Hash N τ

L1
aimer128f 128 128 2 49 91 - 3 SHAKE128 16 33
aimer128s 128 128 2 49 91 - 3 SHAKE128 256 17

L3
aimer192f 192 192 2 17 47 - 5 SHAKE256 16 49
aimer192s 192 192 2 17 47 - 5 SHAKE256 256 25

L5
aimer256f 256 256 3 11 141 7 3 SHAKE256 16 65
aimer256s 256 256 3 11 141 7 3 SHAKE256 256 33

Table 4: The recommended parameters for AIMer.

5 Formal Security Analysis

5.1 EUF-CMA Security of AIMer in the Random Oracle Model

In this section, we prove the EUF-CMA (existential unforgeability under adap-
tive chosen-message attacks [GMR88]) security of AIMer. To prove the EUF-
CMA security, we first show that AIMer is secure against key-only attack (EUF-
KO) in Theorem 1, where an adversary is given the public key and no access to
the signing oracle. Then, we show that AIMer is EUF-CMA secure by proving
that the signing can be simulated without using the secret key in Theorem 2.
In our security proof, we followed the same arguments as the security proof of
BN++ in [KZ22].

Theorem 1 (EUF-KO Security of AIMer). Assume that H0, H1, H2, H4,
H5, ExpandH1, and ExpandH2 be modeled as random oracles, and let (N, τ, λ) be
parameters of the AIMer signature scheme. Let A be a probabilistic polynomial-
time (PPT) adversary against the EUF-KO security of AIMer that makes a total
of Q random oracle queries. There exists a PPT adversary B such that

Adveuf-ko
AIMer (A) ≤

(τN + 1)Q2

22λ
+ Pr[X + Y = τ] +Advowf

AIM2(B),

where Pr[X + Y = τ] is as described in the proof.

Proof. We build an algorithm B that retrieves a pre-image for the one-way func-
tion AIM2 using the EUF-KO adversary A as a subroutine. Suppose that all the
queries to H1, H2 and H5 are listed in Q1, Q2 and Q5, respectively.

Algorithm B takes the AIM2 one-way function value (iv, ct) as an input, and
forwards it to A as an AIMer public key for the EUF-KO game. B manages a
set Bad to keep track of all the answers from the three random oracles and two
tables Tsh and Tin to record the values derived from A’s RO queries as follows:

– Tsh to store secret shares of the parties, and
– Tin to store inputs to the MPC protocol.

We also program the random oracles for A as follows.

27

– H1 : When A commits to seeds and sends the offsets for the preimage pt
which is the secret key and the multiplication triples, B check the query list
Q5 to see if the commitments were output by its simulation of H5. If B finds
matching results for all i’s in some repetition k, then it can recover pt. See
Algorithm 10.

– H2 : See Algorithm 11.
– H5 : When A queries random oracle for H5, B records the query to match

the commitments and expanded random tape with its corresponding seeds.
See Algorithm 12.

– H0, H4, ExpandH1 and ExpandH2 are not programmed.

AfterA terminates, B checks whether there is ptk ∈ Tin satisfying AIM2(iv, ptk) =
ct. If B finds a match ptk, B outputs it as a pre-image for the AIM2, otherwise
B outputs ⊥.

Given the algorithm of B as above, the probability that A wins is bounded
as below.

Pr[A wins] =Pr[A wins ∧ B aborts] + Pr[A wins ∧ B outputs ⊥]
+ Pr[A wins ∧ B outputs pt]

≤Pr[B aborts] + Pr[A wins | B outputs ⊥] + Pr[B outputs pt] (4)

We define Q1, Q2 and Q5 as the number of queries made by A to random oracles
H1, H2 and H5, respectively. Then we can bound the probability that B aborts
(The first term on the RHS of (4)) as follows.

Pr[B aborts] = (#times an r is sampled) · Pr[B aborts at that sample]

≤ (Q1 +Q2 +Q5) ·
max |Bad|

22λ

= (Q1 +Q2 +Q5) ·
(τN + 1)Q1 + 2Q2 +Q5

22λ

≤ (τN + 1)(Q1 +Q2 +Q5)
2

22λ
≤ (τN + 1)Q2

22λ
. (5)

We now analyze Pr[A wins | B outputs ⊥] (the second term in the RHS
of (4)), which means that pt corresponding to (iv, ct) is not found. We parse
it into two cases, which correspond to cheating in the first and second rounds,
respectively.

Cheating in the first round. Let q1 ∈ Q1 be a query to H1, and h1 =
((ϵk,j)j∈[ℓ+1])k∈[τ] be its corresponding answer. We collect the set of indices k ∈
[τ] representing “good executions” such that Tin[q1, k] is not empty and vk = 0,
say G1(q1, h1). For k ∈ G1(q1, h1), the challenges (ϵk,j)j∈[ℓ+1] were sampled so
that the multiplication check protocol presented in the Section 2.3 is passed in
this repetition. According to Lemma 1, if the secret shared inputs contain an
incorrect multiplication triple, since h1 is sampled uniformly at random, this
happens with probability at most 1/2λ.

28

Algorithm 10: H1(q1 = σ1):

1 Parse σ1 as
(
salt, ((com

(i)
k)i∈[N],∆ptk,∆ck, (∆tk,j)j∈[ℓ])k∈[τ]

)
.

2 for k ∈ [τ], i ∈ [N] do

3 com
(i)
k → Bad.

// If the committed seed is known for some k and i, then B records

the shares of the secret key and the views of the parties,

derived from that seed and the offsets in σ1.

4 for k ∈ [τ], i ∈ [N] do

5 if ∃seed(i)k : ((salt, k, i, seed
(i)
k), com

(i)
k , pt

(i)
k , a

(i)
k , c

(i)
k , (t

(i)
k,j)j∈[ℓ]) ∈ Q5 then

6 if i = N then

7 pt
(i)
k ← pt

(i)
k +∆ptk, c

(i)
k ← c

(i)
k +∆ck and (t

(i)
k,j ← t

(i)
k,j +∆tk,j)j∈[ℓ]

8 (pt
(i)
k , c

(i)
k , (t

(i)
k,j)j∈[ℓ])→ Tsh[q1, k, i]

// If the shares of the various elements are known for every party

in that repetition, B records the resulting secret key,

multiplication inputs and S-box outputs.

9 for each k : ∀i, Tsh[q1, k, i] ̸= ∅ do
10 ptk ←

∑
i pt

(i)
k , ck ←

∑
i c

(i)
k , ak ←

∑
i a

(i)
k , (tk,j ←

∑
i t

(i)
k,j)j∈[ℓ].

11 for j ∈ [ℓ] do

12 Set xk,j ← tk,j and zk,j ← (xk,j)
2
ej

+ γj · xk,j .

13 for j = ℓ+ 1 do

14 Set xk,j ←
∑

j∈[ℓ] Aiv,j · xk,j + biv and zk,j ← (xk,j)
2e∗ + ct · xk,j .

15 ptk → Tin[q1, k].
16 r ←$ {0, 1}2λ.
17 if r ∈ Bad then
18 abort.

19 r → Bad.
20 (q1, r)→ Q1.

// Compute the multiplication check protocol values.

21 (ϵk,j)j∈[ℓ+1] ← ExpandH1(r).
22 for each k : Tin[q1, k] ̸= ∅ do
23 αk = ak +

∑
j∈[ℓ+1] ϵj · xj + ak.

24 vk = ck +
∑

j∈[ℓ+1] ϵj · zk,j − αk · pt.

25 Return r.

29

Algorithm 11: H2(q2 = (h1, σ2)):

1 h1 → Bad.

2 r ←$ {0, 1}2λ.
3 if r ∈ Bad then
4 abort.

5 r → Bad.
6 (q2, r)→ Q2.
7 Return r.

Algorithm 12: H5(q5 = (salt, k, i, seed)):

1 r ←$ {0, 1}2λ.
2 if r ∈ Bad then
3 abort.

4 r → Bad.

5

(
pt

(i)
k , a

(i)
k , c

(i)
k , (t

(i)
k,j)j∈[ℓ]

)
←$ F2n × F2n × F2n × (F2n)

ℓ

6

(
qc, r, pt

(i)
k , a

(i)
k , c

(i)
k , (t

(i)
k,j)j∈[ℓ]

)
→ Qc.

7 Return
(
r, pt

(i)
k , a

(i)
k , c

(i)
k , (t

(i)
k,j)j∈[ℓ]

)
.

Lemma 1. If the secret-shared input (xj , y, zj)j∈[C] contains an incorrect multi-
plication triple, or if the shares of ((aj , y)j∈[C], c) form an incorrect dot product,

then the parties output Accept in the subprotocol with probability at most 1/2λ.

Proof. Let ∆zj = zj − xj · y and ∆c = −
∑

j∈[C] aj · y + c. Then,

v =
∑
j∈[C]

ϵj · zj − α · y + c

=
∑
j∈[C]

ϵj · zj −
∑
j∈[C]

ϵj · xj · y −
∑
j∈[C]

aj · y + c

=
∑
j∈[C]

ϵj · (zj − xj · y)−
∑
j∈[C]

aj · y + c

=
∑
j∈[C]

ϵj ·∆zj +∆c.

Define a multivariate polynomial

Q(X1, . . . , XC) = X1 ·∆z1 + · · ·+XC ·∆zC +∆c

over F2n and note that v = 0 if and only if Q(ϵ1, . . . , ϵC) = 0. In the case of a
cheating prover, Q is nonzero, and by the multivariate version of the Schwartz-
Zippel lemma, the probability that Q(ϵ1, . . . , ϵC) = 0 is at most 1/2λ, since Q
has total degree 1 and (ϵ1, . . . , ϵC) is chosen uniformly at random. ⊓⊔

30

Given B outputs ⊥, the number of elements #G1(q1, h1)|⊥ ∼ Xq1 where
Xq1 = B(τ, p1), where B(τ, p1) is the binomial distribution with τ events, each
with success probability p1 = 1/2λ. We select the query-response pair (qbest1 , hbest1)
such that #G1(q1, h1) is the maximum. Then, the following holds.

#G1(qbest1 , hbest1)|⊥ ∼ X = max
q1∈Q1

{Xq1}.

Cheating in the second round. Let q2 = (h1, σ2) be a query to H2. Note
that q2 can only be used in the winning EUF-KO game when the corresponding
(q1, h1) ∈ Q1 exists. For the bad repetition k ∈ [τ]\G1(q1, h1), either Tin[q1, k]
is empty (which means verification fails so that A loses) or vk ̸= 0 but the
verification passes. Hence, it should be the case that one of theN parties cheated.
Since h2 = (̄ik)k∈[τ] ∈ [N]τ is distributed uniformly at random, the probability
that one of the N parties has cheated for all bad executions k is(

1

N

)τ−#G1(q1,h1)

≤
(

1

N

)τ−#G1(qbest1 ,hbest1
)

.

To sum up, we can analyze the probability that A wins conditioning on B
outputting ⊥ is

Pr[A wins | B outputs ⊥] ≤ Pr[X + Y = τ], (6)

where X is as before, and Y = maxq2∈Q2
{Yq2} where Yq2 variables are indepen-

dently and identically distributed as B(τ −X, 1/N).
Finally, combining (4), (5) and (6) all together, we obtain the following.

Pr[A wins] ≤ (τN + 1) ·Q2

22λ
+ Pr[X + Y = τ] + Pr[B outputs pt],

where X and Y are defined as above. Setting AIM2 as a secure OWF, we achieve
(1) as desired.

Theorem 2 (EUF-CMA Security of AIMer). Assume that H0, H1, H2,
H4, H5, ExpandH1, and ExpandH2 are modeled as random oracles and that the
(N, τ, λ) parameters of AIMer are appropriately chosen. For a PPT adversary A
against the EUF-CMA security of AIMer with total Qsig signing oracle queries
and Q random oracle queries, there exist a PPT adversary B against the EUF-
KO security of AIMer (with same amount of queries to random oracles) and a
PPT adversary C against the PRF security of H3

2 such that

Adveuf-cma
AIMer (A) ≤ Qsig ·Advprf

H3
(C) + 2(τ + 1) logN · (Qsig +Q)2

22λ

+Adveuf-ko
AIMer (B).

2 H3 itself is not a PRF, but it is used as a PRF with key prepending. We use this
notation for convenience.

31

Proof. Let A be an EUF-CMA adversary against AIMer for given (iv, ct). Let G0

be the original EUF-CMA game. Let Osig be the signing oracle, and Qsig be the
number of different signing queries during the game by A, Qi for i = 0, 1, 2, 4, 5
be the number of queries made to Hi by A where Q5 includes queries to H5

made during signing queries.
We begin to prove the security of the deterministic version of AIMer (ρ← 0n),

and prove that of the probabilistic version later. Without loss of generality, we
assume that all messages in signing queries are distinct.

G1: This game acts same as G0 except that it aborts if there exists two different
queries on H0 with same outputs. As output length of H0 is 2λ, we have

Pr[G1 aborts] ≤ (Qsig +Q0)
2

22λ
.

G2: Osig replaces salt ∈ {0, 1}λ and root seeds (seedk)k∈[τ] ∈ ({0, 1}λ)τ by ran-
domly sampled values, instead of computing H3(pt, µ, ρ). As µ are always
distinct for each query, the difference between this game and the previous
one reduces to the PRF security of H3 with secret key pt. Therefore, there
exists a PPT adversary C against the PRF security of H3 such that

|Pr[A wins G1]− Pr[A wins G2]| ≤ Qsig ·Advprf
H3

(C).

G3: Osig samples (nodes1[2
j], nodes1[2

j +1]) in ExpandTree uniformly at random
instead of computing H4(salt, 0, 2

j−1, nodes[2j−1]) and programs the random
oracle H4 to output the sampled value for the corresponding query, for j ∈
[log2 N] in step by step. The simulation is aborted if the queries to H4 have
been made previously, for any j. As salt and nodes[2j−1] are random, this
game is indistinguishable with the previous game unless the simulation is
aborted, and the probability of abort is

Pr[G3 aborts] ≤ log2 N ·Qsig(Qsig +Q4)

22λ
.

G4: Osig samples
(
com

(1)
1 , pt

(1)
1 , (t

(1)
1,j)j∈[ℓ], c

(1)
1

)
at random instead of computing

H5(salt, 0, 0, seed
(1)
1), and programs the random oracleH5 to output the same

value for the respective query. The simulation is aborted if the queries to

H5 have been made previously. As salt ∈ {0, 1}λ and seed
(1)
1 ∈ {0, 1}λ are

random, this game is indistinguishable with the previous game unless the
simulation is aborted, and the probability of abort is

Pr[G4 aborts] ≤ Qsig(Qsig +Q5)

22λ
.

G5: Osig samples h1 ∈ {0, 1}2λ at random instead of computing

H1(µ, salt, ((com
(i)
k)i∈[N], ∆ptk, ∆ck, (∆tk,j)j∈[ℓ])k∈[τ])

32

and program the random oracleH1 to output h1 for the respective query. The
first challenge (ϵk,j)k∈[τ],j∈[ℓ+1] is derived by expanding h1. The simulation is

aborted if the queries to H1 have been made previously. As com
(1)
1 ∈ {0, 1}2λ

is random, this game is indistinguishable with the previous game unless the
simulation is aborted, and the probability of abort is

Pr[G5 aborts] ≤ Qsig(Qsig +Q1)

22λ
.

G6: Osig samples h2 ∈ {0, 1}2λ at random instead of computing

H2(h1, salt, ((α
(i)
k)i∈[N], (v

(i)
k)i∈[N])k∈[τ])

and program the random oracle H2 to output h2 for the respective query.
The unopened parties (̄ik)k∈[τ] are derived by expanding h2. The simulation

is aborted if the queries to H2 have been made previously. As h1 ∈ {0, 1}2λ
is random, this game is indistinguishable with the previous game unless the
simulation is aborted, and the probability of abort is

Pr[G6 aborts] ≤ Qsig(Qsig +Q2)

22λ
.

G7: Osig replaces the seed of the unopened parties seed
(̄ik)
k in the binary tree by

a random element for each k ∈ [τ]. If ī1 = 1, it does not need to replace

seed
(1)
1 with a random element again. Similarly to G3, it is indistinguishable

from the previous game with the advantage bounded by

|Pr[A wins G6]− Pr[A wins G7]| ≤
τ log2 N ·Qsig(Qsig +Q4)

22λ
.

G8: Osig replaces the outputs of H5(salt, k− 1, īk− 1, seed
(̄ik)
k) by randomly sam-

pled elements for each k, and programs the random oracle H5 to output the

same values for the respective queries. Also, Osig sets v
(̄ik)
k ← 0−

∑
i ̸=īk

v
(i)
k

for each k ∈ [τ]. Osig aborts if the replaced commitment value collides with

that inH5(x) where x is queried by A. Since (salt, seed(̄ik)k) is a random string
of 2λ bits, this game is indistinguishable with the previous game unless the
simulation is aborted, and the probability of abort is

Pr[G8 aborts] ≤ τQsig(Qsig +Q5)

22λ
.

Note that for k ∈ [τ] such that īk ̸= N , α
(̄ik)
k is also random and independent

to pt.
G9: Osig replaces

(∆ptk, ∆ck, (∆tk,j)j∈[ℓ])k∈[τ]

by random elements instead of computing them using pt and S-box outputs.

As
(
com

(̄ik)
k , pt

(̄ik)
k , (t

(̄ik)
k,j)j∈[ℓ], c

(̄ik)
k

)
k∈[τ]

is random, the distribution of these

variables does not change.

33

Note that now for all k ∈ [τ], (α
(̄ik)
k)k∈[τ] is random and independent of pt.

If the multiplication triple is wrong, then v
(̄ik)
k ← −

∑
i ̸=īk

v
(i)
k is different

from an honest value derived from legitimate calculation. However (̄ik) is
unopened and the multiplication check is still passed. Since the signature
oracle in G8 does not depend on the secret key pt, and it implies that G8 can
be reduced to the EUF-KO security. Therefore, there exists a PPT adversary
B on EUF-KO security against AIMer such that

Pr[A wins G9] ≤ Adveuf-ko
AIMer(B).

All in all, we have

Adveuf-cma
AIMer (A) ≤ (Qsig +Q0)

2

22λ
+Qsig ·Advprf

H3
(A)

+ (τ + 1) logN · Qsig(Qsig +Q4)

22λ
+

(τ + 1)Qsig(Qsig +Q5)

22λ

+
Qsig(Qsig +Q1)

22λ
+

Qsig(Qsig +Q2)

22λ
+Adveuf-ko

AIMer(A)

≤ Qsig ·Advprf
H3

(C) + 2(τ + 1) logN · (Qsig +Q)2

22λ

+Adveuf-ko
AIMer(B)

provided that logN ≥ 4 and Q0 + Q1 + Q2 + Q4 + Q5 ≤ Q. The EUF-CMA
advantage is negligible in λ assuming that AIM2 is a secure one-way function
and that parameters (N, τ, λ) are appropriately chosen.

For the non-deterministic version of A, all games are defined in a manner
almost identical to the deterministic version, with the exception of handling
two queries to Osig that involve the same messages and ρ values. If (m, ρ) are
identical in two queries, the outputs must also be identical; thus, we avoid ran-
dom sampling and use already programmed outputs for the random oracles in
such cases. Consequently, the differences between the adjacent games remain
unchanged from the deterministic version, leading to the same bounds on the
advantage of A.

⊓⊔

5.2 Information-Theoretic Security of AIM2 in the Random
Permutation Model

In this section, we consider the one-wayness of AIM2. More precisely, we will
prove the everywhere preimage resistance [RS04] of AIM2 when the underlying
S-boxes are modeled as public random permutations and iv is (implicitly) fixed.3

3 The sum of two public random permutations is indifferentiable from a public random

function up to 2
2n
3 queries [GBJ+23], implying the preimage security of AIM2 up

to the same query complexity, while we prove here its preimage security up to 2n

queries.

34

On the other hand, we do not claim that the algebraic S-boxes of AIM2 behave
like random permutations. The point of the provable security of AIM2 is that
one cannot break the one-wayness of AIM2 without exploiting any particular
properties of the underlying S-boxes.

For simplicity, we will assume that ℓ = 2. The security of AIM2 with ℓ > 2 is
similarly proved. In the public permutation model and in the single-user setting,
AIM2 is defined as

AIM2(pt) = S3(A1 · S1(pt)⊕A2 · S2(pt)⊕ b)⊕ pt

for pt ∈ {0, 1}n, where S1, S2, S3 are independent public random permutations,4

and A1 and A2 are fixed n× n invertible matrices, and b is a fixed n× 1 vector
over F2.

In the preimage resistance experiment, a computationally unbounded ad-
versary A with oracle access to Si, i = 1, 2, 3, selects and announces a point
ct ∈ {0, 1}n before making queries to the underlying permutations. After making
q forward and backward queries in total,5 A obtains a query history

Q = {(ij , xj , yj)}qj=1

such that Sij (xj) = yj and A’s j-th query is either Sij (xj) = yj or S
−1
ij

(yj) = xj

for j = 1, . . . q. We say that A succeeds in finding a preimage of ct if its query
history Q contains three queries S1(x1) = y1, S2(x2) = y2 and S3(x3) = y3 such
that

x1 = x2,

x3 = A1 · y1 ⊕A2 · y2 ⊕ b,

ct = y3 ⊕ x1.

In this case, we say that A wins the preimage-finding game, breaking the one-
wayness of AIM2. Assuming that A is information-theoretic, we can prove that
A’s winning probability, denoted Advepre

AIM2(A), is upper bounded as follows.

Advepre
AIM2(A) ≤

2q

2n − q
. (7)

Proof of (7). Since A is information-theoretic, we can assume that A is deter-
ministic. Furthermore, we assume that A does not make any redundant query.
More precisely, A never makes a query that will result in a triple (i, x, y) which
is already present in the query history.

Our security proof also uses the notion of “free” queries. Formally, these
can be modeled as queries which the adversary is “forced” to query (under
certain conditions), but for which the adversary is not charged: they do not count

4 We ignore constant addition to the S-box input or regard it as a part of the S-box.
5 We assume that A evaluates AIM2 only by making oracle queries to the underlying
permutations.

35

towards the maximum of q queries which the adversary is allowed. However, these
queries become part of the adversary’s query history, just like other queries. In
particular, the adversary is not allowed, later, to remake these queries “on its
own” (due to the assumption that the adversary never makes a query which it
already owns). Precisely, we will modify A so that whenever A makes a (forward
or backward) query to S1 (resp. S2) obtaining S1(x) = y (resp. S2(x) = y),
A makes an additional forward query to S2 (resp. S1) with x for free. This
additional query will not degrade A’s preimage-finding advantage since A is free
to ignore it.

An evaluation AIM2(pt) = ct consists of three S-box queries. Among the
three S-box queries, the lastly asked one is called the preimage-finding query.
We distinguish two cases.

Case 1. The preimage-finding query is made to either S1 or S2. Since A con-
secutively obtains a pair of queries of the form S1(x) = y1 and S2(x) = y2,
any preimage-finding query to either S1 or S2 should be forward. If it is
S1(x) (without loss of generality), then there should be queries S2(x) = y
for some y and S3(z) = x ⊕ ct for some z that have already been made by
A. In order for S1(x) to be the preimage-finding query, it should be the case
that

S3(A1 · S1(x)⊕A2 · S2(x)⊕ b) = x⊕ ct

or equivalently,

S1(x) = A−1
1 · (z ⊕ b⊕A2 · y)

which happens with probability at most 1
2n−q . Therefore, the probability of

this case is upper bounded by q
2n−q .

Case 2. The preimage-finding query is made to S3. In order to address this
case, we use the notion of a wish list, which was first introduced in [AFK+11].
Namely, whenever A makes a pair of queries S1(x) = y1 and S2(x) = y2, the
evaluation

S3 : A1 · y1 ⊕A2 · y2 ⊕ b 7→ x⊕ ct

is included in the wish list W. In order for an S3-query to complete an
evaluation AIM2(pt) = ct for any pt, at least one “wish” in W should be
made come true. Each evaluation in W is obtained with probability at most

1
2n−q , and |W| ≤ q. Therefore, the probability of this case is upper bounded

by q
2n−q .

Overall, we can conclude that

Advepre
AIM2(A) ≤

2q

2n − q
.

One-wayness in the multi-user setting. In the multi-user setting with
u users, A is given u different target images, where the adversarial goal is to

36

invert any of the target images. In this setting, the adversarial preimage finding
advantage is upper bounded by

2uq

2n − q
. (8)

The proof of (8) follows the same line of argument as the single-user security
proof. The difference is that the probability that each query to either S1 or S2

becomes the preimage-finding one is upper bounded by uq
2n−q and the size of the

wish list (in the second case) is upper bounded by uq.
We note that the above bound does not mean that AIM2 provides only the

birthday-bound security in the multi-user setting. The straightforward birthday-
bound attack is mitigated since AIM2 is based on a distinct linear layer for every
user.

6 Security Evaluation

6.1 Summary of Expected Security Strength

The AIMer signature scheme provides three levels of security: L1 (AES-128), L3
(AES-192), and L5 (AES-256). Each security level corresponds to the security of
AES in the parentheses, and it implies that we expect AIMer with L1, L3, and L5
parameters to be as secure as AES-128, AES-192, AES-256 respectively, against
both classical and quantum attacks. In this section, we examine the concrete
security of the three components of AIMer: the non-interactive zero-knowledge
proof of knowledge (NIZKPoK), the one-way function, and the hash functions.

Security of the NIZKPoK System. The NIZKPoK system in AIMer is
basically BN++ [KZ22] with slight modifications. The security of AIMer is proved
in Section 5.1 in the random oracle model.

In the quantum-accessible random oracle model (QROM), an adversary is al-
lowed to make superposition queries to the random oracle. The NIZKPoK system
in AIMer (and BN++) follows the spirit of the Fiat-Shamir transform [FS87],
and there has been a significant amount of research on the QROM security of
the Fiat-Shamir transform [LZ19,DFMS19,DFM20,DFMS22a,DFMS22b]. The
NIZKPoK system of AIMer should be seen as a variant of the original Fiat-
Shamir transform, while its security is not immediate from the above results,
and we will prove it as a future work.

The parameters N and τ are fixed based on the soundness analysis given
in [KZ22]; we see that an attacker should make at least 2λ guesses in order to
produce a valid forgery without any knowledge of the secret key. Since a single
guess involves at least one hash or XOF call (where a single call of hash is
more costly than AES), AIMer with our recommended sets of parameters would
provide a sufficient level of security.

Security of AIM2. AIM2 is a one-way function, which does not follow the
traditional design rationale of symmetric primitives. It takes random strings iv

37

and pt as input, and outputs ct = AIM2(iv, pt). We expect that finding pt∗ for
a given pair (iv, ct) such that ct = AIM2(iv, pt∗) is as hard as key recovery of
AES with the same security level. To support our claim, we not only prove the
information-theoretic security of AIM2 but also investigate its security against
brute-force attacks, algebraic attacks, statistical attacks, and quantum attacks
in Section 6.3.

In Section 5.2, we prove the everywhere preimage resistance [RS04] of AIM2
in the random permutation model. The one-wayness is proved assuming that
the S-boxes are modeled as public random permutations. Although our choice of
S-boxes is far from a random permutation, the proof itself exhibits that AIM2 is
one-way unless any particular properties of the underlying S-boxes are exploited.

For the algebraic attacks, we analyze the security of AIM2 against the fast
exhaustive search attacks [LMOM23,Bou22], Gröbner basis algorithm, Dinur’s
equation solving algorithm [Din21], and the linearization attack by Zhang et
al. [ZWY+23]. We argue that AIM2 is secure against these attacks under the as-
sumption of the semi-regular system even in case such that an adversary chooses
intermediate variables not only the outputs of the S-boxes. All the algebraic at-
tacks on AIM2 require more gate-count complexity than required for AES, or
require more than 2λ memory bits. For the statistical attacks, we lower bounded
the weights of differential and linear trails of AIM by near λ, although statistical
attacks are not possible with a single input-output pair. For quantum attacks,
we looked into Grover’s algorithm, quantum algebraic attacks, and quantum
generic attacks. The most powerful attack among them turns out to be Grover’s
algorithm while its complexity against AIM2 is not lower than that applied to
AES with the same security level. All the analysis on AIM2 is summarized in
Section 6.3.

In the multi-user setting, we expect that finding one of pti given multiple
pairs {(ivi, cti)} such that cti = AIM2(ivi, pti) for some i is hard assuming that
iv’s are randomly chosen. If iv’s can be arbitrarily chosen, a collision of cti is
connected to a forgery. For example, if an IV value iv∗ collides q times in a set
of public keys, an attacker may compute the function AIM2(iv∗, pt) for c times
with distinct pt’s. Then, the probability of collision is approximately qc/2n,
which implies a security degradation.

Except for the risk of collision, multiple pairs {(ivi, cti)} do not lead to a
strengthened attack on AIM2 to the best of our knowledge. For algebraic attacks,
any two sets of equations built for distinct pt’s are not compatible. For statistical
attacks, any two public-key pairs are not compatible with differential/linear
cryptanalysis if corresponding pt’s are distinct.

Hash Function Security. The AIMer signature scheme requires a lot of calls
to hash functions and extendable output functions (XOFs). All the hash func-
tions and XOFs are based on NIST-standardized XOF SHAKE [NIS15]. SHAKE-
128 is used for the L1 parameters, and SHAKE-256 is used for the L3 and L5
parameters. All the hash functions use 2λ-bit digests of the SHAKE output.

We expect the concrete security provided by SHAKE for collision and preim-
age resistance as claimed in [NIS15]. For λ ∈ {128, 256}, the preimage resistance

38

of SHAKE-λ with k-bit digest is claimed to be min(2k, 22λ) in the classical set-
ting, and a cryptographic hash function with k-bit digest is generally believed to
have O(2k/2) preimage resistance in the quantum setting [Gro96]. In both cases,
hash functions with 2λ-bit digests provide λ-bit preimage resistance. For colli-
sion resistance, while a generic quantum algorithm of finding a hash collision is
of complexity O(2k/3) when the output size is k bits [BHT98], Bernstein pointed
out that the quantum hash collision algorithm has worse performance compared
to classical algorithms in practice [Ber09]. Since it is claimed that k-bit digests of
SHAKE-λ has collision resistance of min(2k/2, 2λ) against classical attacks, the
2λ-bit digest also allows λ-bit collision resistance against classical and quantum
attacks.

6.2 Soundness Analysis

In this section, we analyze the soundness error of the AIMer signature scheme
to determine the set of parameters (λ,N, τ). A more formal analysis is given
in Section 5.1. Let τ1 and τ2 denote the number of repetitions for which the
attacker needs to make correct guesses on the first challenge ϵk,j in Phase 2 and
the second challenge īk in Phase 4 in Algorithm 8, respectively. Then, it should
be the case that τ = τ1 + τ2. For i = 1, 2, let Pi be the probability that the
attacker makes correct guesses for τi challenges in the i-th challenge space.

The first challenge is sampled from the set of size 2n, so the probability of
correctly guessing τ1 challenges in the first challenge space is given as

P1 =

τ∑
k=τ1

(
τ
k

)
pk · (1− p)τ−k

where p = 2−λ. On the other hand, since the second challenge space is of size
N , and the attacker needs to make correct guesses in the remaining repetitions,
one has

P2 = 1/Nτ2 = 1/Nτ−τ1 .

Overall, the attack complexity is given as

C = min
0≤τ1≤τ

(1/P1 + 1/P2).

Our parameters are set in a way such that C ≥ 2λ.

6.3 Known Attacks to AIM2

6.3.1 Brute-force Attack

Saarinen proposed an efficient brute-force attack for AIM using a linear feedback
shift register.6 Although the symmetric primitive in AIMer is changed to AIM2,
his attack remains valid and is the fastest brute-force attack. By introducing an

6 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2ilXblNy0

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2ilXblNy0

39

output of an inverse Mersenne S-box as a new variable, we can establish a simpler
equation. For example, in AIM2-I or AIM2-III, one may find y by iterating y and
y−1 such satisfies

Mer[e1](t1) = x+ γ1 where


x := y2

e2 · y−1 + γ2,

t∗ := Mer[e∗]
−1(x+ ct),

t1 := A−1
iv,1(biv +Aiv,2(y) + t∗).

An attacker may change the new variable y = Mer−1[ti] for some i ∈ {1, . . . , ℓ, ∗}
and its corresponding system to reduce the amount of computation. Assuming
that a multiplication by a fixed matrix does not require any AND gate and
a squaring of a finite field element requires n XOR gates, the minimum com-
plexities are 2147.0/2212.2/2277.7 for AIM2-I/III/V. These values are still larger
than the gate-count complexity of AES (2143/2207/2272). The numbers of gates
required to evaluate addition chains for S-boxes are in Table 5.

Scheme Circuit
#Operations

FF Mult. FF Square

AIM2-I

Mer[3] / Mer[3]−1 2 / 8 2 / 126

Mer[49] / Mer[49]−1 7 / 11 48 / 127

Mer[91] / Mer[91]−1 9 / 11 90 / 127

AIM2-III

Mer[5] / Mer[5]−1 3 / 9 4 / 190

Mer[17] / Mer[17]−1 5 / 11 16 / 191

Mer[47] / Mer[47]−1 8 / 11 46 / 191

AIM2-V

Mer[3] / Mer[3]−1 2 / 10 2 / 255

Mer[7] / Mer[7]−1 4 / 11 6 / 255

Mer[11] / Mer[11]−1 5 / 10 10 / 255

Mer[141] / Mer[141]−1 10 / 10 140 / 253

Table 5: The number of operations for each type of operation in AIM2.

For a comparison, we note that the complexities of the brute-force attack
with direct computations are 2147.7/2212.9/2278.2 for AIM2-I/III/V. These values
are slightly (< 1 bit) larger than the costs of the former method.

6.3.2 Algebraic Attacks

Since our attack model does not allow multiple evaluations for a single instance
of AIM2, we do not consider interpolation, higher-order differential, and cube
attacks. As discussed in [KHSL24], we consider the Gröbner basis attack on
various systems obtained from a single evaluation of AIM2. As several attacks on

40

AIM were proposed, we describe how those attacks are mitigated in AIM2. We
also consider algebraic attacks which have been recently studied for MPC/ZK-
friendly ciphers such as LowMC [ARS+15] and large S-box-based ones.

Various Systems of AIM2. There are multiple ways of building a system of
equations from an evaluation of AIM2. We can categorize them according to the
number of (Boolean) variables and find the optimal choice of variables to obtain
a system of the lowest degree. Since ℓ ∈ {2, 3} is recommended, we consider four
types of systems of Boolean equations as follows.

1. Systems in n variables.
2. Systems in 2n variables.
3. Systems in 3n variables.
4. Systems in 4n variables (only for ℓ = 3).

With (ℓ+ 1)n variables, we can establish a system Squad of quadratic equations.
The variables are denoted as follows.

- x: the input of AIM2, i.e., pt
- ti: the output of Mer[ei]

−1 for i = 1, . . . , ℓ
- z: the output of Lin

From Mer[ei]
−1(x+γi) = ti, we obtain 3n Boolean quadratic equations in x and

ti induced by the following relations.
ti(x+ γi) = t2

ei

i ,

ti(x+ γi)
2 = t2

ei

i (x+ γi),

t2i (x+ γi) = t2
ei+1

i .

When x and ti are of higher degrees with respect to other variables, the first two
relations result in 2n equations of degree deg x+deg ti, while the last one results
in n equations of degree max(deg x + deg ti, 2 deg ti). There are also n Boolean
quadratic equations in ti and tj induced by the following.

(γi + γj)titj = t2
ei

i tj + tit
2ej
j .

We note that z has the same relation with ti with respect to x as z = Mer[e∗]
−1(x+

ct). Using the brute-force search of quadratic equations on toy parameters, we
find that these are all the possible (linearly independent) quadratic equations
on AIM2 (see [KHSL24] for details). Hence, Squad consists of 3(ℓ+ 1)n+

(
ℓ+1
2

)
n

quadratic equations.
With fewer variables, the resulting systems would have higher degrees. For

example, Mer[ei]
−1 implicitly determines 3n quadratic equations in x and ti as

above, while ti (resp. x) can be explicitly represented by a polynomial in x (resp.
ti). We can also explicitly represent ti using tj for j ̸= i or z as follows.

ti = Mer[ei]
−1 (Mer[ej](tj)⊕ γi ⊕ γj)

= Mer[ei]
−1 (Mer[e∗](z)⊕ ct) .

41

The degree of ti with respect to tj (resp. z) might be greater than the degree of
Mer[ei]

−1 ◦Mer[ej] (resp. Mer[ei]
−1 ◦Mer[e∗]) due to the constant addition, while

we estimate it as the degree of the composition (without constant addition) for
simplicity.

Scheme Type #Var Variables (#Eq, Deg)
Gröbner Basis Dinur [Din21]

k dreg Time Time Memory

AIM2-I
S1 n t1 (n, 60) - - - 141.2 140.4
S2 2n t1, t2 (3n, 2) 62 15 207.9 244.6 177.2

Squad 3n x, t1, t2 (12n, 2) 0 16 185.3 330.1 258.9

AIM2-III
S1 n x (2n, 114) - - - 206.5 205.9
S2 2n t1, t2 (3n, 2) 100 20 301.9 330.1 258.9

Squad 3n x, t1, t2 (12n, 2) 0 22 262.4 487.7 381.0

AIM2-V

S1 n x (2n, 172) - - - 271.4 270.9
S2 2n t2, z (n, 2) + (2n, 38) 253 30 513.5 525.0 520.0
S3 3n t1, t2, t3 (6n, 2) 2 47 503.7 644.9 502.7

Squad 4n x, t1, t2, t3 (18n, 2) 9 32 411.4 854.4 664.7

Table 6: Optimal systems of equations and their security against algebraic at-
tacks. (#Eq,Deg) = (a, b) means that the system contains a equations of degree
b. All the complexities are measured by (3) with ω = 2. k is the number of
guessed bits and dreg is the degree of regularity. ‘Time’ and ‘Memory’ are in log.

Table 6 summarizes a system of equations of the lowest degree for each type,
where such systems are denoted by S1, S2, . . . , Squad respectively, according to
the number of variables. The complexities are measured by (3) with ω = 2. For
systems of equations of type S1 in n variables, we did not compute precise com-
plexities since a system of degree near n/2 requires the Gröbner basis algorithm
to use approximately 2n monomials so that the time complexity will be close to
O(22n).

Fast Exhaustive Search. The fast exhaustive search attacks [BCC+10,Bou22]
are infeasible if the target polynomial system is of a high degree. Although the
time complexity of the fast exhaustive search is claimed to be 4d log(n)2n, there
is a hidden preprocessing cost

T =

d−1∑
k=0

k

(
n

k

)(
k

min(d− k, k)

)
≥ 2d

3
22d/3

(
n

⌊2d/3⌋

)

in binary operations where
(
n
↓k
)
=

∑k
i=0

(
n
i

)
. One can see that T ≫ d2n if

d ≥ 0.341n. Furthermore, if d ≥ n/2, then the memory complexity will also be
higher than 2n bits.

42

Introducing New Variables Other Than S-box Outputs.We considered
systems whose variables are inputs/outputs of the S-boxes. One might try to
build a system by introducing new variables other than S-box outputs. However,
such systems have no advantage over the previous ones in terms of algebraic
attacks. We refer to [KHSL24] for details.

Linearization Attacks on AIM by Guessing. Zhang et al. [ZWY+23] pro-
posed an algebraic attack on AIM that linearizes the S-boxes at the first round
by guessing. This attack is not applicable to AIM2 since the constant addition by
AddConst makes the inputs to the S-boxes different. This is the simplest patch
among the possible ones proposed by the authors.

Algebraic Attacks on Symmetric Primitives with Large S-box. Sev-
eral symmetric primitives based on large fields have been proposed with applica-
tions to zero-knowledge proof systems such as MiMC [AGR+16], Jarvis [AD18],
and Starkad/Poseidon [GKR+21]. Some of them have been analyzed with alge-
braic attacks exploiting the property that their linear layers are represented as
polynomials of low degrees over large fields [ACG+19,EGL+20]. However, AIM2
uses a randomized linear layer which is expected to have degree 2n−1 over F2n .
For this reason, the above attacks would not apply to AIM2.

Applicability of Algebraic Attacks on LowMC. LowMC [ARS+15] is
the first FHE/MPC-friendly block cipher, and one of its applications is to the
Picnic signature scheme. LowMC has been analyzed in the context of the sig-
nature scheme, where an adversary is given only a single plaintext-ciphertext
pair. In this setting, a number of algebraic attacks on LowMC have been pro-
posed [BBDV20,BBVY21,LIM21b,Din21,LMSI22,BBCV22], mainly based on two
algebraic techniques: linearization by guessing, and the polynomial method [Bei93].

The main idea of linearization-based algebraic attacks on LowMC, first pro-
posed in [BBDV20], is to linearize the underlying S-boxes by guessing a single
output bit for each S-box evaluation. In this way, one obtains a system of low-
degree polynomial equations at the cost of guessing a small number of bits, and
it can be solved efficiently. This linearization technique has been further ex-
tended [BBVY21,LIM21b]. For AIM2 having large S-boxes with dense implicit
equations, it seems to be infeasible to linearize the S-boxes by guessing some of
the input/output bits.

The polynomial method [Bei93] has been studied in complexity theory, and
later found its application to design algorithms for certain problems [Wil14],
one of which is to solve a system of polynomial equations over a finite field. The
resulting algorithm is known as the first algorithm that achieves exponential
speedup over the exhaustive search even in the worst case [LPT+17]. Recently,
Dinur [Din21] proposed a generic equation-solving algorithm based on the poly-
nomial method with time complexity O(n2 ·2(1−1/(2.7d))n) where n is the number
of variables and d is the degree of the system. One arguable issue of this algo-
rithm is its high memory complexity of O(n2 · 2(1−1/(1.35d))n), making it infeasi-
ble in practice. For AIM2, the memory complexity required by Dinur’s algorithm
exceeds the security level, i.e., more than 2λ bits of memory are required for

43

each level of security λ. Table 6 shows the time and the memory complexity of
Dinur’s algorithm for each system of AIM2. Subsequent works [LMSI22,BBCV22]
are proposed to reduce the memory complexity of the algorithm at the cost of
slightly increased time complexity, while these variants do not apply to AIM2
since they all follow the guess-and-linearization strategy on LowMC.

6.3.3 Differential and Linear Cryptanalysis

An adversary is allowed to evaluate AIM2 with an arbitrary input pair (pt, iv)
in an offline manner. However, such an evaluation is independent of the actual
secret key pt∗, so the adversary is not able to collect a sufficient amount of
statistical data which are related to pt∗. Furthermore, the linear layer of AIM2
is generated independently at random for every user. For this reason, we believe
that our construction is secure against any type of statistical attack including
(impossible) differential, boomerang, and integral attacks.

In the multi-target scenario, an adversary has no information on which users
have the same secret. Even for multiple users with the same iv, statistical attacks
would not be feasible since all the inputs and their differences are unknown to
the adversary. That said, to prevent any unexpected variant of differential and
linear cryptanalysis, we summarize a lower bound of the weight of differential
and correlation trails in this section.

Differential Cryptanalysis. Since AIM2 is a key-less primitive, we will es-
timate the security of AIM2 against differential cryptanalysis by lower bounding
the weight of a differential trail (for example, as in [DVA12]).

Given a function f : {0, 1}n → {0, 1}m, the weight of a differential (∆x,∆y) ∈
{0, 1}n × {0, 1}m is defined by

wd(∆x
f−→ ∆y) := n− log |{x ∈ {0, 1}n : f(x⊕∆x)⊕ f(x) = ∆y}| .

The weight is not defined if there is no x such that f(x ⊕ ∆x) ⊕ f(x) = ∆y.
Otherwise, we say that ∆x and ∆y are compatible.

A differential trail is the composition of compatible differentials. For AIM2,
a differential trail from an input to the output (ignoring the feed-forward) can
be represented as follows.

Q = ∆0
Mer[e1,...,eℓ]

−1

−−−−−−−−−→ ∆1
Lin−−→ ∆2

Mer[e∗]−−−−→ ∆3

as AddConst does not affect differentials. Then, the weight of the differential trail
Q is defined as

wd(Q) :=

2∑
i=0

wd(∆i → ∆i+1).

The weight of a Mersenne S-box is determined by the number of solutions to
Mer[e](x⊕∆x)⊕Mer[e](x) = ∆y, which is a polynomial equation of degree 2e−2.

44

Therefore, there are at most 2e − 2 solutions to this equation, which implies for
∆x ̸= 0,

wd(∆x
Mer[e]−−−−→ ∆y) ≥ n− log2(2

e − 2) ≥ n− e.

Then we have

wd(Q) =
∑
i

wd(∆i → ∆i+1)

≥
∑

1≤j≤ℓ

(n− ej) = ℓn−
∑
j

ej

as ∆2 may be zero. So, for any differential trail Q, wd(Q) is close to λ with
λ = n. We note that a trail Q such that wd(Q) < λ never incurs a collision
since ∆3 = ∆0, and the existence of such trail does not imply the feasibility of
differential cryptanalysis since an adversary is not given a large enough number
of plaintext-ciphertext pairs to mount the analysis.

Difference Enumeration Attack. Recently, difference enumeration attacks
to LowMC have been proposed [RST18,LIM21a,LSW+22], which require only a
couple of chosen plaintext-ciphertext pairs. In such attacks, an adversary enu-
merates all possible input and output differences and tries to find a collision and
recover the unknown key. This type of attack works for LowMC since it is based
on small S-boxes. So one can easily find all possible differentials in LowMC. On
the other hand, AIM2 is based on n-bit S-boxes, making it infeasible to enumerate
all possible differences of each S-box.

Linear Cryptanalysis. In contrast to differential cryptanalysis, security against
linear cryptanalysis has been rarely evaluated for key-less primitives since its
goal is to retrieve the secret key, not finding a collision or a second-preimage.
That said, we lower bound the weight of a correlation trail for completeness in
a similar way to differential cryptanalysis.

Given a function f : {0, 1}n → {0, 1}m, the weight of a correlation (α, β) ∈
{0, 1}n × {0, 1}m is defined by

wl(α
f−→ β) := n− log

∣∣2 ∣∣{x ∈ {0, 1}n : α⊤x = β⊤f(x)
}∣∣− 2n

∣∣ .
The weight is not defined if there are exactly 2n−1 values for x such that α⊤x =
β⊤f(x). Otherwise, we say that α and β are compatible.

A correlation trail is the composition of compatible correlations. For AIM2,
a correlation trail from an input to the output (ignoring the feed-forward) can
be represented as follows.

Q = α0
Mer[e1,...,eℓ]

−1

−−−−−−−−−→ α1
Lin−−→ α2

Mer[e∗]−−−−→ α3.

Then the weight of the correlation trail Q is defined as

wl(Q) :=

2∑
i=0

wl(αi → αi+1).

45

When d is not a power-of-2 and f(x) = xd is invertible over F2n , one has the
following generic bound [KSW19].∣∣2 ∣∣{x : α⊤x = β⊤f(x)

}∣∣− 2n
∣∣ ≤ (d− 1)2n/2

for any compatible correlation (α, β). Therefore the weight of a correlation trail
of a Mersenne S-box is lower bounded by wl(Q) ≥ n

2 − e. Then we have

wl(Q) =
∑
i

wl(αi → αi+1)

≥ max
1≤i≤ℓ

(n/2− ei) + wl(α2 → α3)

≥ max
1≤i≤ℓ

(n/2− ei) + (n/2− e∗)

= n− e1 − e∗.

As Lin is a (full-rank) compression function, α2 cannot be the zero mask. Since
linear cryptanalysis requires 22wl(Q) plaintext-ciphertext pairs, AIM2 would be
secure against linear cryptanalysis if

2(n− e1 − e∗) ≥ λ

which is the case for AIM2. We emphasize again that linear cryptanalysis is not
practically relevant in our setting since AIM2 does not use any secret key, while
all the inputs are kept secret and every user is assigned a distinct linear layer.

6.3.4 Quantum Attacks

Quantum attacks are classified into two types according to the attack model.
In the Q1 model, an adversary is allowed to use quantum computation without
making any quantum query, while in the Q2 model, both quantum computation
and quantum queries are allowed [Zha12].

As a generic algorithm for exhaustive key search, Grover’s algorithm has
been known to give quadratic speedup compared to the classical brute-force at-
tack [Gro96]. In this section, we investigate if any specialized quantum algorithm
targeting AIM2 might possibly achieve better efficiency than Grover’s algorithm
in the Q1 model.

Cost of Grover’s Algorithm. We consider the cost metric of NIST [NIS22],
which is defined as the product of the quantum circuit size and the quantum
circuit depth with respect to Clifford and T gates.

Given a one-way function f taking n bits as input, the circuit size and the
depth of the preimage-finding attack on f using Grover’s algorithm is estimated
as follows [BJ24].

(Grover’s circuit size/depth) = (size/depth of f)× 2×
⌊π
4

√
2n

⌋
.

The quantum circuit size and the depth of AIM2 can be computed in a modular
manner. AIM2 is based on three types of operations: finite field multiplication,

46

finite field squaring, and random matrix multiplication. The costs of finite field
multiplications, finite field squaring, and evaluation of the linear layer are esti-
mated using the result in [JOKS24].

In the context of quantum attacks, minimizing the circuit depth is crucial
compared to classical attacks. Therefore, when employing Grover’s algorithm
for AIM2, it might be more efficient to compute the inputs and outputs of the
linear layer in AIM2 for each candidate pt and check whether the intermediate
variables satisfy proper linear equations, rather than searching for an x that
satisfies AIM2(iv, x) = ct. For example, given AIM2(iv, ·) = ct with ℓ = 2, one
can find x satisfying

Lin[iv](t1, t2) = t∗ where


t1 := Mer[e1]

−1(x+ γ1),

t2 := Mer[e2]
−1(x+ γ2),

t∗ := Mer[e∗]
−1(x+ ct).

(9)

Table 7 summarizes the total number of operations and the depth of operations
for each type of operation to implement (9), where the number of operations
required to evaluate addition chain for S-boxes are from Table 5. The depth of
each operation for evaluating a single S-box is the same as the number of the same
operations. Based on these numbers and the above references, we summarize the
estimated cost of Grover’s algorithm on AIM2 (in log) for each level of security
in Table 7. We see that AIM2-I, AIM2-III, and AIM2-V satisfy the security level
I, III and V, respectively.7

The total cost of Grover’s algorithm might be further reduced than expected;
a better representation of the AIM2 circuit with respect to the total cost might
be proposed, or more efficient addition chain might be discovered. However,
we believe that the advance of such optimization technique will not reduce the
total cost below that of AES with the same security level, since the amount
attributable to finite multiplications is more than the total cost of AES.

Scheme
#Operations, Depth Total

Cost
Level of
SecurityFF Mul FF Square

AIM2-I 30, 11 380, 127 162.6 I (≥157)
AIM2-III 31, 11 572, 191 229.2 III (≥221)
AIM2-V 41, 11 1018, 255 294.9 V (≥285)

Table 7: The number of operations and the depth for each type of operation
used in AIM2, and the total cost of Grover’s algorithm on AIM2 for each level of
security.

7 In the call for proposals by NIST [NIS22], the security levels I, III, V are defined
as the strength of AES-128, AES-192, AES-256, respectively, against Grover’s algo-
rithm.

47

Quantum Algebraic Attack. When an algebraic root-finding algorithm
works over a small field, the guess-and-determine strategy might be effectively
combined with Grover’s algorithm, reducing the overall time complexity.

The GroverXL algorithm [BY18] is a quantum version of the FXL algo-
rithm [CKPS00], which solves a system of multivariate quadratic equations
over a finite field. A single evaluation of AIM2 can be represented by Boolean
quadratic equations using intermediate variables. Precisely, we have a system of
3(ℓ+ 1)n+

(
ℓ+1
2

)
n quadratic equations in (ℓ+ 1)n variables. For this system of

equations, the time complexity of GroverXL is given as 2(1.1062+o(1))n for AIM2-
I, III and 2(1.3568+o(1))n for AIM2-V when using ω = 2, which is worse than
Grover’s algorithm.

The QuantumBooleanSolve algorithm [FHK+17] is a quantum version of the
BooleanSolve algorithm [BFSS13], which solves a system of Boolean quadratic
equations. In [FHK+17], its time complexity has been analyzed only for a system
of equations with the same number of variables and equations. A single evalu-
ation of AIM2 can be represented by 3(ℓ + 1)n +

(
ℓ+1
2

)
n quadratic equations in

(ℓ+1)n variables. In the paper, the complexities are summarized only when the
number of equations are same as the number of variables. We numerically found
the minimum complexities according to the number of guessed variables. The
complexity of probabilistic variant of QuantumBooleanSolve for AIM2-I, III is
minimized to O(21.047n) when 29%8 of variables are guessed, and that for AIM2-
V is minimized to O(21.320n) when 20% of variables are guessed, which is worse
than Grover’s algorithm.

In contrast to the algorithms discussed above, Chen and Gao [CG22] pro-
posed a quantum algorithm to solve a system of multivariate equations using
the Harrow-Hassidim-Lloyd (HHL) algorithm [HHL09] that solves a sparse sys-
tem of linear equations with exponential speedup. In brief, Chen and Gao’s
algorithm solves a system of linear equations from the Macaulay matrix by
the HHL algorithm. It has been claimed that this algorithm enjoys exponen-
tial speedup for a certain set of parameters. When applied to AIM2, the ham-
ming weight of the secret key should be smaller than O(log n) to achieve expo-
nential speedup [DGG+21]. Otherwise, this algorithm is slower than Grover’s
algorithm [DGG+21].

Quantum Generic Attack. A generic attack does not use any particular
property of the underlying components (e.g., S-boxes for AIM2). The underly-
ing smaller primitives are typically modeled as public random permutations or
functions. The Even-Mansour cipher [EM97], the FX-construction [KR01] and a
Feistel cipher [LR86] have been analyzed in the classic and generic attack model.
As their quantum analogues, the Even-Mansour cipher [KM12,BHNP+19], the
FX-construction [LM17,HS18] and a Feistel cipher [KM10] have been analyzed
in the Q1 or Q2 model. Most of these attacks can be seen as a combination of
Simon’s period finding algorithm [Sim97] (in the Q2 model), and Grover’s/offline
Simon’s algorithms [BHNP+19] (in the Q1 model). Since Simon’s period finding

8 In the original paper, this value is denoted by 1− γ.

48

algorithm requires multiple queries to a keyed construction (which is not the
case for AIM2), we believe that the above attacks do not apply to AIM2 in a
straightforward manner.

6.4 Attacks in the Multi-User Setting

The analysis of the multi-user security of a cryptographic scheme is crucial,
as most cryptographic schemes are used by multiple users in practice. In this
setting, an adversary is given multiple users’ instances (e.g., public keys and
corresponding signatures), and it aims to attack one of them.

Multi-User EUF-CMA Security. Since EUF-CMA security is a fundamen-
tal requirement for digital signatures, it is natural to consider Multi-User EUF-
CMA (MU-EUF-CMA) security in the multi-user setting. Here, the adversary is
given multiple signing oracles (corresponding to distinct public keys), and tries
to generate a valid forgery under one of the given public keys through a cho-
sen message attack. Thanks to the generic reduction from EUF-CMA security
to MU-EUF-CMA security [GMLS02], AIMer provides MU-EUF-CMA security
with losses that are (at most) linear in the number of users. In addition, the con-
crete design of AIMer takes into account multi-user attacks, or more generally,
multi-target attacks.

Multi-Target Attacks. In multi-target attacks, an adversary is given a mul-
tiple number of targets, for example, the outputs of a cryptosystem computed
with different secret keys. This is inherently possible in the multi-user setting,
and even in a single-user setting, when multiple targets are available to the
adversary.

There are many examples of successful multi-target attacks. In [DN19], Dinur
and Nadler proposed an effective multi-target attack on Picnic version 1.0. The
main idea is that an attacker collects multiple outputs generated from unknown
seeds of the unopened party in the MPCitH protocol, compares them to the
outputs from guessed ones, trying to find a collision using a certain efficient
algorithm such as hash tables to recover the seed of the unopened party. Once
the seed is revealed, the secret key is also recovered from its additive shares. The
above attack is mitigated in the next version of the Picnic signature by using a
random salt and domain seperation prefixes as an additional input of underlying
hash functions and XOFs.

Multi-target attacks have also been proposed on hash-based signature schemes
[BXKSN21,YAG21]. As many hash outputs are used as secret keys of the un-
derlying one-time signature (OTS), the seed guessing technique also works in
hash-based signatures, and the recovered seed reveals the corresponding secret
keys. It can be mitigated by domain separation of the hash functions according
to the position of the OTS instances. Another multi-target attack on SPHINCS+

of the L5 parameter set exploits the small state size of SHA-256 [PKC22], but
it is not applicable when SHAKE256 is used as the underlying hash function.

When it comes to AIMer, the use of iv mitigates multi-target attacks. AIM2
generates its linear layer from a random iv, so not only each user has a different

49

secret key (i.e., the input of AIM2), but also the functions themselves are all
different. Moreover, similarly to the mitigation techniques described above, all
inputs to hash functions hash at least 2λ-bit randomness (e.g. salt, seeds, or
commits) and domain separation is applied to each hash function and the XOF
used in the signature. It would prevent any type of efficient multi-target preimage
search attack, such as time/memory/data trade-off attacks [BS00] and parallel
quantum multi-target preimage attacks [BB18]. We refer to Section 4.1.2 for
detailed specifications of the hash functions.

Key Substitution Attacks. In a key substitution attack (KSA), an adversary
is given a signature σA under a public key pkA. Then the adversary tries to
produce a fake public key pkE such that σA is also a valid signature under pkE .
This type of attacks were first considered in [BWM99], under the name unknown
key-share attacks, and later formalized in [MS04]. Although the possibility of
KSA does not violate the MU-EUF-CMA security, it may need to be considered
in practical applications of digital signatures, in particular, when non-repudation
property is required [KM13]. Fortunately, the security against KSAs can be
achieved in the generic way using the following theorem.

Theorem 3 (Theorem 6 in [MS04]). Let Π = (KeyGen,Sign,Verify) be an
EUF-CMA secure digital signature scheme. Then, Π ′ = (KeyGen,Sign′,Verify)
is a secure digital signature scheme against KSAs with

Sign′ = Sign(sk,Encode(pk,m))

where Encode is an unambiguous encoding scheme of public keys and messages.

In AIMer, a (fixed length) public key is always appended to the message before
hashing, so we believe that AIMer is secure against KSAs.

6.5 Side-Channel Attacks

The key generation and signing algorithms, which manipulate the secret key of
AIMer, are executed in constant time. Therefore, we anticipate no vulnerabilities
to either simple power attacks [KJJ99] or timing attacks [Koc96].

Numerous masking techniques designed to thwart side-channel attacks adopt
the principle of secret sharing [ISW03,BBP+17,KR19]. Since AIMer generates a
signature by simulating the secret-shared computation of a one-way function, it
seems to provide inherent mitigation against certain side-channel attacks.

Despite this, AIMer is expected to be susceptible to power attacks [KJJ99],
electromagnetic radiation attacks [QS01], and fault-injection attacks [BDL97] if
no countermeasures are implemented. Specifically, during the signing algorithm,
the secret key pt requires careful handling since it is used in field arithmetic op-

erations. For ∆ptk in phase 1 of the signing algorithm, calculated as pt−
∑

i pt
(i)
k ,

it is crucial to perform field additions by pt only after the complete computa-

tion of
∑

i pt
(i)
k to avoid exposure through differential power attacks [KJJ99] or

correlation power attacks [BCO04]. This precaution is based on the fact that

50

an adversary knows most of pt
(i)
k values [HHL+23]. Therefore, all implementa-

tions ensure that field addition involving pt occurs only once. Furthermore, in
both reference and optimized implementations, field multiplication employs a
temporary table based on the first input, with the second input serving as a
table reference. Thus, to prevent cache attacks [Ber05], pt is inputted as the first
operand in field multiplication operations.

Recently, machine learning techniques have been integrated with various ex-
isting side-channel attacks targeting both conventional and post-quantum en-
cryption schemes [DGD+19,WD20,DNGW23]. In response, we plan to develop
effective countermeasures against these attacks in the future.

7 Performance

We implemented the AIMer signature scheme for the following targets:

Reference. Reference C implementation targeting 64-bit platforms.
Optimized. Highly optimized implementation using AVX2 instruction sets.
mem opt. Stack-optimized C implementation targeting on memory-constrained

devices.
aarch64. Optimized implementation targeting ARM Cortex-A76 and Apple M2

Pro processors using ARM NEON instruction sets along with PMULL cryp-
tographic instruction.

aarch64 shake opt. SHAKE-optimized implementation targeting ARMCortex-
A76 utilizing ARM NEON instruction sets and Apple M2 Pro processors
utilizing SHA3 instructions along with optimizations for aarch64.

The implementation is available at https://github.com/samsungsds-research-papers/
AIMer.

7.1 Description of the Benchmarking Environments

We utilized two distinct architectures for testing platforms that support In-
tel x64 processors running on Linux. For benchmarking the Reference, Op-
timized, and mem opt implementations, we disabled the Turbo Boost and
Hyper-Threading features. The benchmarks were executed on a single CPU
core using the taskset command. For the benchmarking of the aarch64 and
aarch64 shake opt implementations, we selected the Raspberry Pi 5 Model B
and MacBook Pro with Apple M2 Pro due to its capability to utilize the PMULL
cryptographic extension. Additionally, in benchmarking aarch64 shake opt,
the Raspberry Pi 5 utilizes ARM NEON instructions and MacBook Pro utilizes
SHA3 instructions for SHAKE optimization. All benchmarks were compiled with
the optimization flag -O3.

E1 Testing Environment 1
• OS : Ubuntu 22.04.3 LTS
• CPU : Intel Core i7-10750H @ 2.6 GHz (Comet Lake)

https://github.com/samsungsds-research-papers/AIMer
https://github.com/samsungsds-research-papers/AIMer

51

• RAM : 16 GB

• Compiler : gcc 11.4.0

E2 Testing Environment 2

• OS : Ubuntu 18.04.6 LTS

• CPU : Intel Xeon E5-1650 v3 @ 3.5 GHz (Haswell)

• RAM : 128 GB

• Compiler : gcc 7.5.0

E3 Testing Environment 3

• OS : Raspbery Pi OS (Debian GNU/Linux 12)

• SoC : Broadcom BCM2712

• CPU : ARM Cortex-A76 @ 2.4 GHz

• RAM : 8 GB

• Compiler : gcc 12.2.0

E4 Testing Environment 4

• OS : MacOS 14.0

• CPU : Apple M2 Pro

• RAM : 16 GB

• Compiler : Apple clang 15.0.0

7.2 Key and Signature Sizes

Table 8 presents the sizes of the public key, secret key, and signature for vari-
ous parameter sets using the NIST/SUPERCOP API9 functions crypto sign

keypair, crypto sign, and crypto sign open. These sizes remain consistent
across all implementations.

Parameters
Public key size Secret key size Signature size

(bytes) (bytes) (bytes)

aimer128f 32 48 5,888
aimer128s 32 48 4,160

aimer192f 48 72 13,056
aimer192s 48 72 9,120

aimer256f 64 96 25,120
aimer256s 64 96 17,056

Table 8: Key and signature sizes for various parameter sets.

9 https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/example-files/api-notes.pdf

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/example-files/api-notes.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/example-files/api-notes.pdf

52

7.3 Timing Results

In Tables 9 and 10, we present the timing results in milliseconds and CPU clock
cycles for three types of our implementations in E1 and E2, respectively. Table 11
and 12 provides the timing results in milliseconds for our implementations in E3
and E4, respectively. For E1 and E2, timing results were obtained by measuring
the average clock cycles over 104 executions using the rdtsc instruction. For
E3 and E4, instead of clock cycles, we employed the clock gettime function
to obtain the average timing results with nanosecond-level precision over 104

executions.

Parameters
KeyGen Sign Verify

(ms) (cycles) (ms) (cycles) (ms) (cycles)

Reference Implementation

aimer128f 0.05 130,398 1.61 4,174,175 1.49 3,882,168
aimer128s 0.05 130,302 12.57 32,678,777 12.50 32,512,507

aimer192f 0.10 263,750 4.12 10,711,924 3.83 9,959,836
aimer192s 0.10 265,592 32.11 83,490,253 31.78 82,621,544

aimer256f 0.22 567,290 8.94 23,247,758 8.37 21,767,704
aimer256s 0.22 576,120 68.49 178,084,597 68.05 176,919,836

Optimized (AVX2) Implementation

aimer128f 0.03 87,926 0.50 1,289,604 0.47 1,233,725
aimer128s 0.03 87,749 3.74 9,726,954 3.70 9,626,252

aimer192f 0.06 162,096 1.28 3,330,337 1.25 3,251,432
aimer192s 0.06 162,257 9.69 25,182,063 9.51 24,726,816

aimer256f 0.13 326,351 2.56 6,647,688 2.49 6,480,509
aimer256s 0.13 327,559 18.43 47,908,698 18.39 47,804,387

mem opt Implementation

aimer128f 0.05 130,578 2.52 6,549,458 1.48 3,850,860
aimer128s 0.05 130,334 20.00 51,999,628 12.41 32,260,032

aimer192f 0.10 268,218 6.00 15,590,962 3.82 9,993,309
aimer192s 0.10 263,985 46.77 121,590,679 31.64 82,253,034

aimer256f 0.22 566,828 11.73 30,508,839 8.36 21,746,823
aimer256s 0.22 562,603 89.57 232,894,855 68.43 177,909,797

Table 9: Performance of our implementations on E1.

53

Parameters
KeyGen Sign Verify

(ms) (cycles) (ms) (cycles) (ms) (cycles)

Reference Implementation

aimer128f 0.04 140,957 1.27 4,445,737 1.18 4,136,229
aimer128s 0.04 142,660 9.94 34,802,676 9.91 34,700,924

aimer192f 0.08 275,690 3.25 11,387,676 3.03 10,598,361
aimer192s 0.08 276,192 25.33 88,639,008 25.23 88,293,809

aimer256f 0.17 594,552 7.14 24,973,868 6.64 23,223,403
aimer256s 0.17 599,691 53.51 187,279,730 53.47 187,159,426

Optimized (AVX2) Implementation

aimer128f 0.03 94,689 0.41 1,434,607 0.40 1,391,522
aimer128s 0.03 94,429 3.06 10,707,455 3.03 10,613,281

aimer192f 0.05 168,402 1.01 3,520,329 0.99 3,467,598
aimer192s 0.05 168,288 7.50 26,238,870 7.57 26,486,219

aimer256f 0.10 344,688 1.96 6,872,392 1.91 6,671,228
aimer256s 0.10 354,620 14.17 49,593,604 14.06 49,209,017

mem opt Implementation

aimer128f 0.04 141,172 2.02 7,072,818 1.19 4,153,261
aimer128s 0.04 138,108 15.92 55,770,664 9.92 34,728,263

aimer192f 0.08 275,580 4.79 16,778,458 3.05 10,686,211
aimer192s 0.08 277,549 37.14 129,996,337 25.12 87,928,142

aimer256f 0.17 605,196 9.27 32,443,648 6.58 23,027,035
aimer256s 0.17 594,991 70.58 247,028,233 53.47 187,161,336

Table 10: Performance of our implementations on E2.

Parameters
aarch64 aarch64 shake opt

KeyGen Sign Verify KeyGen Sign Verify
(ms) (ms) (ms) (ms) (ms) (ms)

aimer128f 0.04 1.10 1.07 0.04 0.99 0.94
aimer128s 0.04 8.60 8.55 0.04 7.64 7.58

aimer192f 0.08 2.60 2.55 0.08 2.36 2.30
aimer192s 0.08 19.88 19.73 0.08 17.88 17.77

aimer256f 0.17 4.67 4.61 0.17 4.20 4.11
aimer256s 0.17 35.09 34.59 0.17 31.51 30.69

Table 11: Performance of our implementations on E3.

54

Parameters
aarch64 aarch64 shake opt

KeyGen Sign Verify KeyGen Sign Verify
(ms) (ms) (ms) (ms) (ms) (ms)

aimer128f 0.02 0.50 0.48 0.02 0.30 0.29
aimer128s 0.02 4.45 4.06 0.02 2.22 2.20

aimer192f 0.04 1.21 1.16 0.04 0.73 0.72
aimer192s 0.04 9.42 9.36 0.04 5.34 5.32

aimer256f 0.08 2.23 2.00 0.08 1.35 1.34
aimer256s 0.08 15.41 15.19 0.08 9.73 9.69

Table 12: Performance of our implementations on E4.

7.4 Memory Usage

In this section, we detail the memory usage for our implementations. Mem-
ory usage was measured using Valgrind10 version 3.18.1 on E1 for the Refer-
ence, Optimized, and mem opt implementations, and version 3.19.0 on E3 for
the aarch64 and aarch64 shake opt implementations, employing the Massif
subtool. We executed Massif with the command:

valgrind --tool=massif --stacks=yes ./tests/test sign

The profiling data collected by Massif is written to a massif.out.pid file, where
pid is a process ID of the test sign executable file. For profiling output file, we
used the ms print tool with the command:

ms print massif.out.pid

The peak memory usage for our implementations is presented in Table 13.

8 Advantages and Limitations

8.1 General

AIMer shares similar advantages with other MPCitH-based signature schemes as
follows.

– The security of AIMer depends only on the security of the underlying sym-
metric primitives. In particular, the security of AIMer is reduced to the one-
wayness of AIM2 in the random oracle model.

– Among the signature schemes whose security depends only on symmetric
primitives, AIMer enjoys the smallest signature size.

10 https://valgrind.org

https://valgrind.org

55

Parameters
Reference Optimized mem opt aarch64 aarch64 shake opt

Sign Verify Sign Verify Sign Verify Sign Verify Sign Verify
(KB) (KB) (KB) (KB) (KB) (KB) (KB) (KB) (KB) (KB)

aimer128f 129.5 21.5 131.0 25.2 20.2 21.4 129.5 24.0 134.0 25.0
aimer128s 915.5 38.9 924.9 73.4 32.0 38.9 923.3 72.3 927.8 73.3

aimer192f 286.5 45.0 288.1 49.9 43.5 44.9 286.5 49.8 290.4 50.3
aimer192s 2,017.2 69.8 2,020.6 120.7 53.0 69.7 2,034.7 143.8 2,037.5 144.3

aimer256f 598.7 104.1 600.5 111.3 102.7 104.0 598.7 109.5 601.7 110.1
aimer256s 4,147.4 134.4 4,149.3 218.3 93.6 134.3 4,147.4 216.7 4,148.7 217.3

Table 13: Peak memory usage of our implementations.

– AIMer enjoys the small secret and public key size; the small key size makes
it easier to apply to many PKI applications based on multi-chain certificates
or frequent certificate transmission.

– Key generation is simple and fast.
– AIMer provides a trade-off between the execution time and the signature

size. This feature makes it possible to adjust the performance based on the
user’s requirements.

– AIMer is resistant to the reuse of the public randomnesses such as iv and
salt. To the best of our knowledge, multiple uses of an identical value of iv or
salt linearly increase the probability of a pk-collision or a multi-target hash
collision, respectively.

AIMer also has similar limitations to other MPCitH-based signature schemes as
follows.

– The signature size is relatively large compared to standardized lattice-based
schemes.

– Signing and verification are slower compared to standardized lattice-based
schemes.

8.2 Compatibility with Existing Protocols

The signature size of AIMer is larger than NIST selected algorithms such as
CRYSTALS-Dilithium [LDK+22] and Falcon [PFH+22] except SPHINCS+ [HBD+22],
while the bandwidth of AIMer is sufficiently small so that it is still compatible
with many existing protocols. We experimentally checked the compatibility of the
AVX2 optimized implementation of AIMer at all security levels with the Open
Quantum Safe (OQS) project.11 After creating X.509 certificates signed with
AIMer, we were able to establish TLS 1.3 connections without message fragmen-
tation, where the key exchange algorithm was the hybrid protocol with ECDH

11 http://github.com/open-quantum-safe/liboqs

http://github.com/open-quantum-safe/liboqs

56

(p256/p384/p521) [BCR+18] and CRYSTALS-Kyber [SAB+22] (512/768/1024)
algorithms in OQS.

References

ACG+19. Martin R Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovratovich,
Reinhard Lüftenegger, Christian Rechberger, and Markus Schofnegger.
Algebraic cryptanalysis of STARK-friendly designs: application to MAR-
VELlous and MiMC. In ASIACRYPT 2019, pages 371–397. Springer,
2019.

AD18. Tomer Ashur and Siemen Dhooghe. MARVELlous: a STARK-Friendly
Family of Cryptographic Primitives. Cryptology ePrint Archive, Paper
2018/1098, 2018. https://eprint.iacr.org/2018/1098.

AFK+11. Frederik Armknecht, Ewan Fleischmann, Matthias Krause, Jooyoung
Lee, Martijn Stam, and John Steinberger. The preimage security of
double-block-length compression functions. In ASIACRYPT 2011, pages
233–251. Springer, 2011.

AFK22. Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-Shamir Trans-
formation of Multi-round Interactive Proofs. In Eike Kiltz and
Vinod Vaikuntanathan, editors, Theory of Cryptography, pages 113–142.
Springer, 2022.

AGR+16. Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and
Tyge Tiessen. MiMC: Efficient Encryption and Cryptographic Hashing
with Minimal Multiplicative Complexity. In ASIACRYPT 2016, pages
191–219. Springer, 2016.

AIK+01. Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui,
Shiho Moriai, Junko Nakajima, and Toshio Tokita. Camellia: A 128-Bit
Block Cipher Suitable for Multiple Platforms — Design and Analysis. In
SAC 2001, pages 39–56. Springer, 2001.

ARS+15. Martin R Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In EURO-
CRYPT 2015, pages 430–454. Springer, 2015.

BB18. Gustavo Banegas and Daniel J. Bernstein. Low-Communication Parallel
Quantum Multi-Target Preimage Search. In SAC 2017, pages 325–335.
Springer, 2018.

BBCV22. Subhadeep Banik, Khashayar Barooti, Andrea Caforio, and Serge Vau-
denay. Memory-Efficient Single Data-Complexity Attacks on LowMC
Using Partial Sets. Cryptology ePrint Archive, Paper 2022/688, 2022.
https://eprint.iacr.org/2022/688.

BBDV20. Subhadeep Banik, Khashayar Barooti, F. Betül Durak, and Serge Vaude-
nay. Cryptanalysis of LowMC instances using single plaintext/ciphertext
pair. IACR Transactions on Symmetric Cryptology, 2020(4):130–146,
Dec. 2020.

BBP+17. Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Private Multiplication over Fi-
nite Fields. In Jonathan Katz and Hovav Shacham, editors, CRYPTO
2017, pages 397–426. Springer, 2017.

BBVY21. Subhadeep Banik, Khashayar Barooti, Serge Vaudenay, and Hailun Yan.
New Attacks on LowMC Instances with a Single Plaintext/Ciphertext
Pair. In ASIACRYPT 2021, pages 303–331. Springer, 2021.

https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2022/688

57

BCC+10. Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou,
Ruben Niederhagen, Adi Shamir, and Bo-Yin Yang. Fast Exhaustive
Search for Polynomial Systems in F2. In Stefan Mangard and François-
Xavier Standaert, editors, Cryptographic Hardware and Embedded Sys-
tems, CHES 2010, pages 203–218. Springer, 2010.

BCO04. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power
analysis with a leakage model. In Cryptographic Hardware and Embedded
Systems-CHES 2004: 6th International Workshop Cambridge, MA, USA,
August 11-13, 2004. Proceedings 6, pages 16–29. Springer, 2004.

BCR+18. Elaine Barker, Lily Chen, Allen Roginsky, Apostol Vassilev, and Richard
Davis. Recommendation for Pair-Wise Key-Establishment Schemes Us-
ing Discrete Logarithm Cryptography, 2018. NIST SP 800-56A Rev.3.

BDL97. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Impor-
tance of Checking Cryptographic Protocols for Faults. In Walter Fumy,
editor, EUROCRYPT ’97, pages 37–51. Springer, 1997.

Bei93. R. Beigel. The polynomial method in circuit complexity. In Proceedings
of the Eigth Annual Structure in Complexity Theory Conference, pages
82–95, 1993.

Ber05. Daniel J Bernstein. Cache-timing attacks on AES, 2005.
Ber09. D.J. Bernstein. Cost analysis of hash collisions: Will quantum computers

make SHARCS obsolete. In SHARCS’09 Workshop Record (Proceedings
4th Workshop on Special-purpose Hardware for Attacking Cryptograhic
Systems), pages 105–116, 2009.

BFS04. Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the com-
plexity of Gröbner basis computation of semi-regular overdetermined al-
gebraic equations. In Proceedings of the International Conference on
Polynomial System Solving, pages 71–74, 2004.

BFSS13. Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean
Spaenlehauer. On the complexity of solving quadratic Boolean systems.
Journal of Complexity, 29(1):53–75, 2013.

BHNP+19. Xavier Bonnetain, Akinori Hosoyamada, Maŕıa Naya-Plasencia,
Yu Sasaki, and André Schrottenloher. Quantum Attacks Without
Superposition Queries: The Offline Simon’s Algorithm. In ASIACRYPT
2019, pages 552–583. Springer, 2019.

BHT98. Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis
of hash and claw-free functions. In LATIN’98: Theoretical Informatics:
Third Latin American Symposium Campinas, Brazil, April 20–24, 1998
Proceedings 3, pages 163–169. Springer, 1998.

BJ24. Anubhab Baksi and Kyungbae Jang. Improved Quantum Analysis of
SPECK and LOWMC, pages 91–112. Springer Nature Singapore, Singa-
pore, 2024.

BN20. Carsten Baum and Ariel Nof. Concretely-Efficient Zero-Knowledge Ar-
guments for Arithmetic Circuits and Their Application to Lattice-Based
Cryptography. In PKC 2020, pages 495–526. Springer, 2020.

Bou22. Charles Bouillaguet. Boolean Polynomial Evaluation for the Masses.
Cryptology ePrint Archive, Paper 2022/1412, 2022. https://eprint.

iacr.org/2022/1412.
BS00. Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data

Tradeoffs for Stream Ciphers. In ASIACRYPT 2000, pages 1–13.
Springer, 2000.

https://eprint.iacr.org/2022/1412
https://eprint.iacr.org/2022/1412

58

BSGK+21. Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Em-
manuela Orsini, Peter Scholl, and Greg Zaverucha. Banquet: Short and
fast signatures from AES. In PKC 2021, pages 266–297. Springer, 2021.

BWM99. Simon Blake-Wilson and Alfred Menezes. Unknown Key-Share Attacks
on the Station-to-Station (STS) Protocol. In PKC ’99, pages 154–170.
Springer, 1999.

BXKSN21. Roland Booth, Yanhong Xu, Sabyasachi Karati, and Reihaneh Safavi-
Naini. An Intermediate Secret-Guessing Attack on Hash-Based Signa-
tures. In Toru Nakanishi and Ryo Nojima, editors, IWSEC 2021, pages
195–215. Springer, 2021.

BY18. Daniel J. Bernstein and Bo-Yin Yang. Asymptotically Faster Quantum
Algorithms to Solve Multivariate Quadratic Equations. In PQCrypto
2018, pages 487–506. Springer, 2018.

CDG06. Nicolas T. Courtois, Blandine Debraize, and Eric Garrido. On Exact Al-
gebraic [Non-]Immunity of S-Boxes Based on Power Functions. In ACISP
2006, pages 76–86. Springer, 2006.

CDG+17. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebas-
tian Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Za-
verucha. Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In ACM CCS 2017, pages 1825–1842, 2017.

CG22. Yu-Ao Chen and Xiao-Shan Gao. Quantum Algorithm for Boolean Equa-
tion Solving and Quantum Algebraic Attack on Cryptosystems. Journal
of Systems Science and Complexity, 35(1):373–412, Feb 2022.

CKPS00. Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir.
Efficient algorithms for solving overdefined systems of multivariate poly-
nomial equations. In EUROCRYPT 2000, pages 392–407. Springer, 2000.

DFM20. Jelle Don, Serge Fehr, and Christian Majenz. The Measure-and-
Reprogram Technique 2.0: Multi-Round Fiat-Shamir and More. In
CRYPTO 2020, page 602–631. Springer, 2020.

DFMS19. Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Secu-
rity of the Fiat-Shamir Transformation in the Quantum Random-Oracle
Model. In CRYPTO 2019, volume 11693 of Lecture Notes in Computer
Science, pages 356–383. Springer, 2019.

DFMS22a. Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Ef-
ficient NIZKs and Signatures from Commit-and-Open Protocols in the
QROM. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO
2022, pages 729–757. Springer Nature Switzerland, 2022.

DFMS22b. Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-
Extractability in the Quantum Random-Oracle Model. In Orr Dunkel-
man and Stefan Dziembowski, editors, EUROCRYPT 2022, pages 677–
706. Springer, 2022.

DGD+19. Debayan Das, Anupam Golder, Josef Danial, Santosh Ghosh, Arijit Ray-
chowdhury, and Shreyas Sen. X-DeepSCA: Cross-Device Deep Learning
Side Channel Attack. In 2019 56th ACM/IEEE Design Automation Con-
ference (DAC), pages 1–6, 2019.

DGG+21. Jintai Ding, Vlad Gheorghiu, András Gilyén, Sean Hallgren, and Jian-
qiang Li. Limitations of the Macaulay matrix approach for using the HHL
algorithm to solve multivariate polynomial systems. arXiv 2111.00405,
2021. https://arxiv.org/abs/2111.00405.

https://arxiv.org/abs/2111.00405

59

Din21. Itai Dinur. Cryptanalytic Applications of the Polynomial Method for
Solving Multivariate Equation Systems over GF(2). In Anne Canteaut
and François-Xavier Standaert, editors, EUROCRYPT 2021, pages 374–
403. Springer, 2021.

DKR+22. Christoph Dobraunig, Daniel Kales, Christian Rechberger, Markus
Schofnegger, and Greg Zaverucha. Shorter Signatures Based on Tailor-
Made Minimalist Symmetric-Key Crypto. In ACM CCS 2022, pages
843–857. Association of Computing Machinery, November 2022.

DN19. Itai Dinur and Niv Nadler. Multi-target Attacks on the Picnic Signa-
ture Scheme and Related Protocols. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, pages 699–727. Springer, 2019.

DNGW23. Elena Dubrova, Kalle Ngo, Joel Gärtner, and Ruize Wang. Breaking
a Fifth-Order Masked Implementation of CRYSTALS-Kyber by Copy-
Paste. In Proceedings of the 10th ACM Asia Public-Key Cryptography
Workshop, APKC ’23, page 10–20. Association for Computing Machinery,
2023.

DR02. Joan Daemen and Vincent Rijmen. The Design of Rijndael, volume 2.
Springer, 2002.

dSGMOS19. Cyprien Delpech de Saint Guilhem, Lauren De Meyer, Emmanuela
Orsini, and Nigel P Smart. BBQ: Using AES in picnic signatures. In
SAC 2019, pages 669–692. Springer, 2019.

DVA12. Joan Daemen and Gilles Van Assche. Differential Propagation Analysis
of Keccak. In Anne Canteaut, editor, FSE 2012, pages 422–441. Springer,
2012.

EGL+20. Maria Eichlseder, Lorenzo Grassi, Reinhard Lüftenegger, Morten Øygar-
den, Christian Rechberger, Markus Schofnegger, and Qingju Wang. An
algebraic attack on ciphers with low-degree round functions: application
to full MiMC. In ASIACRYPT 2020, pages 477–506. Springer, 2020.

EM97. Shimon Even and Yishay Mansour. A construction of a cipher from a
single pseudorandom permutation. Journal of Cryptology, 10(3):151–161,
Jun 1997.

Fau99. Jean-Charles Faugère. A new efficient algorithm for computing Gröbner
bases (F4). Journal of Pure and Applied Algebra, 139(1):61–88, 1999.

Fau02. Jean Charles Faugère. A New Efficient Algorithm for Computing Gröbner
Bases without Reduction to Zero (F5). In Proceedings of the 2002 In-
ternational Symposium on Symbolic and Algebraic Computation, ISSAC
’02, page 75–83, New York, NY, USA, 2002. Association for Computing
Machinery.

FHK+17. Jean-Charles Faugère, Kelsey Horan, Delaram Kahrobaei, Marc Kaplan,
Elham Kashefi, and Ludovic Perret. Fast Quantum Algorithm for Solving
Multivariate Quadratic Equations. Cryptology ePrint Archive, Paper
2017/1236, 2017. https://eprint.iacr.org/2017/1236.

Frö85. Ralf Fröberg. An Inequality for Hilbert Series of Graded Algebras.
MATHEMATICA SCANDINAVICA, 56, Dec. 1985.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’ 86, pages 186–194. Springer, 1987.

GBJ+23. Aldo Gunsing, Ritam Bhaumik, Ashwin Jha, Bart Mennink, and Yaobin
Shen. Revisiting the Indifferentiability of the Sum of Permutations. In
Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, pages
628–660. Springer, 2023.

https://eprint.iacr.org/2017/1236

60

GGM86. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM (JACM), 33(4):792–807, 1986.

GKR+21. Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy,
and Markus Schofnegger. Poseidon: A New Hash Function for Zero-
Knowledge Proof Systems. In USENIX Security 2021, pages 519–535.
USENIX Association, 2021.

GLR+20. Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger, Dragos Ro-
taru, and Markus Schofnegger. On a Generalization of Substitution-
Permutation Networks: The HADES Design Strategy. In EUROCRYPT
2020, pages 674–704. Springer, 2020.

GMLS02. Steven D Galbraith, John Malone-Lee, and Nigel Paul Smart. Public
key signatures in the multi-user setting. Information Processing Letters,
83(5):263–266, 2002.

GMO16. Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster
Zero-Knowledge for Boolean Circuits. In USENIX Security 2016, pages
1069–1083. USENIX Association, 2016.

GMR88. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A Digital Signa-
ture Scheme Secure against Adaptive Chosen-Message Attacks. SIAM J.
Comput., 17(2):281–308, apr 1988.

Gro96. Lov K. Grover. A Fast Quantum Mechanical Algorithm for Database
Search. In ACM STOC ’96, page 212–219. Association for Computing
Machinery, 1996.

HBD+22. Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis,
Stefan Kolbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel,
Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Peter
Schwabe, Jean-Philippe Aumasson, Bas Westerbaan, and Ward Beul-
lens. SPHINCS+. Technical report, National Institute of Standards and
Technology, 2022, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

HHL09. Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum Algo-
rithm for Linear Systems of Equations. Phys. Rev. Lett., 103:150502, Oct
2009.

HHL+23. Jaeseung Han, Jae-Won Huh, Sangyub Lee, Jihoon Kwon, and Dong-Guk
Han. Side-Channel and Fault Injection Attacks on The KpqC Digital
Signature Candidate AIMer. In Conference on Information Security and
Cryptography Summer 2023. Korea Institute of Information Secuity &
Cryptology, 2023.

HS18. Akinori Hosoyamada and Yu Sasaki. Cryptanalysis Against Symmetric-
Key Schemes with Online Classical Queries and Offline Quantum Com-
putations. In CT-RSA 2018, pages 198–218. Springer, 2018.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from Secure Multiparty Computation. In ACM STOC 2007,
pages 21–30, 2007.

ISW03. Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In Dan Boneh, editor, CRYPTO
2003, pages 463–481. Springer, 2003.

JOKS24. Kyungbae Jang, Yujin Oh, Hyunji Kim, and Hwajeong Seo. Quantum
Implementation of AIM: Aiming for Low-Depth. Applied Sciences, 14(7),
2024.

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

61

KHS+23. Seongkwang Kim, Jincheol Ha, Mincheol Son, Byeonghak Lee, Dukjae
Moon, Joohee Lee, Sangyub Lee, Jihoon Kwon, Jihoon Cho, Hyojin
Yoon, and Jooyoung Lee. AIM: Symmetric Primitive for Shorter Signa-
tures with Stronger Security. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’23, page
401–415. Association for Computing Machinery, 2023.

KHSL24. Seongkwang Kim, Jincheol Ha, Mincheol Son, and Byeonghak Lee. Ef-
ficacy and Mitigation of the Cryptanalysis on AIM. Cryptology ePrint
Archive, Paper 2023/1474, 2024. https://eprint.iacr.org/2023/1474.

KJJ99. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Anal-
ysis. In CRYPTO’ 99, pages 388–397. Springer, 1999.

KKW18. Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved Non-
Interactive Zero Knowledge with Applications to Post-Quantum Signa-
tures. In ACM CCS 2018, pages 525–537. ACM, 2018.

KM10. Hidenori Kuwakado and Masakatu Morii. Quantum distinguisher be-
tween the 3-round Feistel cipher and the random permutation. In 2010
IEEE International Symposium on Information Theory, pages 2682–2685,
2010.

KM12. Hidenori Kuwakado and Masakatu Morii. Security on the quantum-type
Even-Mansour cipher. In 2012 International Symposium on Information
Theory and its Applications, pages 312–316, 2012.

KM13. Neal Koblitz and Alfred Menezes. Another look at security definitions.
Advances in Mathematics of Communications, 7(1):1–38, 2013.

Koc96. Paul C Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In CRYPTO’96, pages 104–113. Springer,
1996.

KR01. Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive
Key Search (an Analysis of DESX). Journal of Cryptology, 14(1):17–35,
Jan 2001.

KR19. Yael Tauman Kalai and Leonid Reyzin. A Survey of Leakage-Resilient
Cryptography, page 727–794. Association for Computing Machinery, New
York, NY, USA, 2019.

KSW19. Daniel J Katz, KU Schmidt, and A Winterhof. Weil sums of binomi-
als: Properties applications and open problems. In Combinatorics and
Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Ap-
plications, volume 23, pages 109–134. De Gruyter, 2019.

KZ22. Daniel Kales and Greg Zaverucha. Efficient Lifting for Shorter Zero-
Knowledge Proofs and Post-Quantum Signatures. Cryptology ePrint
Archive, Paper 2022/588, 2022. https://eprint.iacr.org/2022/588.

LDK+22. Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter
Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-
DILITHIUM. Technical report, National Institute of Standards and
Technology, 2022, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

LIM21a. Fukang Liu, Takanori Isobe, and Willi Meier. Cryptanalysis of full
LowMC and LowMC-M with algebraic techniques. In CRYPTO 2021,
pages 368–401. Springer, 2021.

LIM21b. Fukang Liu, Takanori Isobe, and Willi Meier. Low-Memory Algebraic
Attacks on Round-Reduced LowMC. Cryptology ePrint Archive, Paper
2021/255, 2021. https://eprint.iacr.org/2021/255.

https://eprint.iacr.org/2023/1474
https://eprint.iacr.org/2022/588
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2021/255

62

LM17. Gregor Leander and Alexander May. Grover Meets Simon – Quantumly
Attacking the FX-construction. In ASIACRYPT 2017, pages 161–178.
Springer, 2017.

LMOM23. Fukang Liu, Mohammad Mahzoun, Morten Øygarden, and Willi Meier.
Algebraic Attacks on RAIN and AIM Using Equivalent Representa-
tions. IACR Transactions on Symmetric Cryptology, 2023(4):166–186,
Dec. 2023.

LMSI22. Fukang Liu, Willi Meier, Santanu Sarkar, and Takanori Isobe. New Low-
Memory Algebraic Attacks on LowMC in the Picnic Setting. IACR
Transactions on Symmetric Cryptology, 2022(3):102–122, Sep. 2022.

LPT+17. Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, Ryan Williams,
and Huacheng Yu. Beating Brute Force for Systems of Polynomial Equa-
tions over Finite Fields. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 2190–2202. SIAM,
2017.

LR86. Michael Luby and Charles Rackoff. How to Construct Pseudo-random
Permutations from Pseudo-random Functions. In CRYPTO ’85, pages
447–447. Springer, 1986.

LSW+22. Fukang Liu, Santanu Sarkar, Gaoli Wang, Willi Meier, and Takanori
Isobe. Algebraic Meet-in-the-Middle Attack on LowMC. Cryptology
ePrint Archive, Paper 2022/019, 2022. https://eprint.iacr.org/2022/
019, to appear Asiacrypt 2022.

LZ19. Qipeng Liu and Mark Zhandry. Revisiting Post-quantum Fiat-Shamir.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
pages 326–355. Springer, 2019.

MS04. Alfred Menezes and Nigel Smart. Security of Signature Schemes in a
Multi-User Setting. Designs, Codes and Cryptography, 33(3):261–274,
Nov 2004.

NIS15. NIST. SHA-3 standard: Permutation-based hash and extendable-output
functions, 2015. FIPS PUB 202.

NIS22. NIST. Call for Additional Digital Signature Schemes for the Post-
Quantum Cryptography Standardization Process. Technical report, Na-
tional Institute of Standards and Technology, 2022, 2022. available at
https://csrc.nist.gov/projects/pqc-dig-sig.

PFH+22. Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirch-
ner, Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gre-
gor Seiler, William Whyte, and Zhenfei Zhang. FALCON.
Technical report, National Institute of Standards and Technol-
ogy, 2022, 2022. available at https://csrc.nist.gov/Projects/

post-quantum-cryptography/selected-algorithms-2022.
PKC22. Ray Perlner, John Kelsey, and David Cooper. Breaking Category Five

SPHINCS+ with SHA-256. In Jung Hee Cheon and Thomas Johansson,
editors, PQCrypto 2022, pages 501–522. Springer, 2022.

QS01. Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis
(EMA): Measures and Counter-measures for Smart Cards. In Isabelle At-
tali and Thomas Jensen, editors, Smart Card Programming and Security,
pages 200–210. Springer, 2001.

RS04. Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-Function
Basics: Definitions, Implications, and Separations for Preimage Resis-
tance, Second-Preimage Resistance, and Collision Resistance. In FSE
2004, pages 371–388. Springer, 2004.

https://eprint.iacr.org/2022/019
https://eprint.iacr.org/2022/019
https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

63

RST18. Christian Rechberger, Hadi Soleimany, and Tyge Tiessen. Cryptanal-
ysis of Low-Data Instances of Full LowMCv2. IACR Transactions on
Symmetric Cryptology, 2018(3):163–181, 2018.

SAB+22. Peter Schwabe, Roberto Avanzi, Joppe Bos, Leo Ducas, Eike Kiltz,
Tancrede Lepoint, Vadim Lyubashevsky, John M. Schanck, Gre-
gor Seiler, Damien Stehle, and Jintai Ding. CRYSTALS-KYBER.
Technical report, National Institute of Standards and Technol-
ogy, 2022, 2022. available at https://csrc.nist.gov/Projects/

post-quantum-cryptography/selected-algorithms-2022.
Sim97. Daniel R. Simon. On the Power of Quantum Computation. SIAM Journal

on Computing, 26(5):1474–1483, 1997.
SS21. Jan Ferdinand Sauer and Alan Szepieneic. SoK: Gröbner Basis Algo-

rithms for Arithmetization Oriented Ciphers. Cryptology ePrint Archive,
Paper 2021/870, 2021. https://eprint.iacr.org/2021/870.

SSA+07. Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu
Iwata. The 128-Bit Blockcipher CLEFIA (Extended Abstract). In FSE
2007, pages 181–195. Springer, 2007.

WD20. Huanyu Wang and Elena Dubrova. Tandem Deep Learning Side-Channel
Attack Against FPGA Implementation of AES. In 2020 IEEE Interna-
tional Symposium on Smart Electronic Systems (iSES) (Formerly iNiS),
pages 147–150, 2020.

Wil14. Richard Ryan Williams. The Polynomial Method in Circuit Complex-
ity Applied to Algorithm Design (Invited Talk). In Venkatesh Raman
and S. P. Suresh, editors, 34th International Conference on Founda-
tion of Software Technology and Theoretical Computer Science (FSTTCS
2014), volume 29 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 47–60, Dagstuhl, Germany, 2014. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

YAG21. Mahmoud Yehia, Riham AlTawy, and T. Aaron Gulliver. Security Analy-
sis of DGM and GM Group Signature Schemes Instantiated with XMSS-
T. In Yu Yu and Moti Yung, editors, Information Security and Cryptol-
ogy, pages 61–81. Springer, 2021.

Zha12. Mark Zhandry. How to Construct Quantum Random Functions. In
2012 IEEE 53rd Annual Symposium on Foundations of Computer Sci-
ence, pages 679–687, 2012.

ZWY+23. Kaiyi Zhang, Qingju Wang, Yu Yu, Chun Guo, and Hongrui Cui. Alge-
braic Attacks on Round-Reduced Rain and Full AIM-III. In Jian Guo
and Ron Steinfeld, editors, ASIACRYPT 2023, pages 285–310. Springer,
2023.

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2021/870

	Introduction
	Overview of the Algorithm
	Notation

	Background
	Security Definitions
	MPC-in-the-Head Paradigm
	BN++ Proof System
	Fiat-Shamir Transform
	Gröbner Basis Attack

	Symmetric Primitive AIM2
	Specification
	Design Rationale

	Specification of the AIMer Signature Scheme
	Basic Algorithms
	Field Representation
	Hash Functions
	GGM Tree Evaluation
	AIM2 Functions

	Signature Scheme
	Key Generation
	Signature Generation
	Signature Verification

	Recommended Parameters

	Formal Security Analysis
	EUF-CMA Security of AIMer in the Random Oracle Model
	Information-Theoretic Security of AIM2 in the Random Permutation Model

	Security Evaluation
	Summary of Expected Security Strength
	Soundness Analysis
	Known Attacks to AIM2
	Brute-force Attack
	Algebraic Attacks
	Differential and Linear Cryptanalysis
	Quantum Attacks

	Attacks in the Multi-User Setting
	Side-Channel Attacks

	Performance
	Description of the Benchmarking Environments
	Key and Signature Sizes
	Timing Results
	Memory Usage

	Advantages and Limitations
	General
	Compatibility with Existing Protocols

