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AIMer KeyGen

1. Sample pt, iv←$ {0, 1}λ

2. Compute AIM2(pt, iv) = ct

3. Set sk = (pt, iv, ct), pk = (iv, ct)



Structure of AIMer Sign

• 5-round Challenge-Response structure
• Challenges are generated using Fiat-Shamir transform
• Phase 1, 3, 5 are repeated τ times, and each repetition computes views
of N parties

• In Phase 2, 4, a single digest is generated by hashing all τ responses,
and is expanded to challenges of specific length



AIMer Sign

0. Instantiate AIM2 (generating linear layer)

1. Generate views of each parties

• Generate each party’s seed by using GGM tree
• Random views are genereted from PRG fed by the seeds
• Compute the corrections between the random views and the real values
• Commit to the seeds
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AIMer Sign
1. Party Simulation
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2. Multiplication triple generation

PRG(seed(1)) = Witness(1) Mult. triple(1)

...

PRG(seed(N)) = Witness(N) Mult. triple(N)

+∆Witness +∆Mult. triple

3. Proof

MultCheck($, W , W )

= Output shares
AIM2

sk

pk

prove

4. Party Opening

Choose i = H(W )



Structure of AIMer Verification

• Recompute Phase 1-4 and check whether the second challenge is same
• Commitments to the hidden seeds are in the signature



AIMer Verification

• Instantiate AIM2
• Recompute Phase 1&2

• Reconstruct opened seeds by using GGM copath
• Reconstruct views of the opened parties using opened seeds
• Recomputed opened commitments, and recompute the first challenge
hash

• Recompute Phase 3&4
• Recompute multiplication check protocol for opened parties and get
output share of hidden party

• Recompute the second challenge

• Accept if the second challenges are same, reject otherwise
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AIMer Verification
1. Party Simulation
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Notes on Standard Document



Function Call Map: KeyGen

• AIMer_keygen - AIMer_keygen_internal
• AIM2

• AIM2_GenerateLinear



Function Call Map: Sign/Verify

• AIMer_sign - AIMer_sign_internal
• Hash: H0, . . . , H5, ExpandH1, ExpandH2

• AIM2_SboxOutputs
• AIM2_GenerateLinear
• ExpandTree / ReconstructTree

• Hash function H4

• AIM2_MPC
• RevealAllBut



Some Added Details

• Explicitly written exponents and constants
• Output size and format of hash functions
• How to generate random numbers: DRBG
• Data conversion (bitstring↔ integer)

• Finite field, matrix-vector multiplication pseudocode
• AIM2_SboxOutputs function
• Multiplication check protocol details
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Some Notes

• Standard document is mainly written using bitstring,which may be
quite different in word-based implementation

• We don’t use “byte” in the document. When using bytes in the real

implementation, please be careful on byte order

• As in Specification v2.1,we only use SHAKE rather than SHA2/3 for

hash functions

• Unlike ML-DSA/SLH-DSA, we don’t have pre-hash variant
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Changes fromAIMer v2.1

• Prefix byte ofH0: 0x00→ 0x00,...,0x50

• If message digest is same, a signer may generate same views throughout
different parameter sets

• Divide into internal/external functions
• Internal function: deterministic, for debugging
• External function: (possibly) probabilistic, for use

• Remove ExpandIV function
• Now index of arrays starts at 0 rather than 1
• Now a context string is inputted to Sign/Verify similarly to ML-DSA
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Name Changes fromAIMer v2.1

• ReconstructSeedTree→ ReconstructTree

• KeyGen→ AIMer_keygen
• Sign→ AIMer_sign
• Verify→ AIMer_verify
• GenerateLinear→ AIM2_GenerateLinear



Q&A


