AlMer Standard Format

KpgC Conference (2025.11)

Seongkwang Kim

Samsung SDS



Recap of AlMer



pt

AlM2

2 —®

Y

Mer[e;] !

—>

2 —d

Y

Mer[es] !

|

Mer[es] !

22—

Y

|




AlMer KeyGen

1. Sample pt,iv < {0, 1}*
2. Compute AIM2(pt,iv) = ct
3. Set sk = (pt,iv, ct), pk = (iv, ct)



Structure of AlMer Sign

5-round Challenge-Response structure
Challenges are generated using Fiat-Shamir transform

Phase 1, 3, 5 are repeated 7 times, and each repetition computes views
of N parties

In Phase 2, 4, a single digest is generated by hashing all 7 responses,
and is expanded to challenges of specific length



AlMer Sign

0. Instantiate AIM2 (generating linear layer)

1. Generate views of each parties

Generate each party’s seed by using GGM tree

e Random views are genereted from PRG fed by the seeds

Compute the corrections between the random views and the real values

Commit to the seeds



[ERN

AlMer Sign

Instantiate AIM2 (generating linear layer)

Generate views of each parties

Generate the first challenge by hashing the commitments and the
corrections



[ERN

AlMer Sign

Instantiate AIM2 (generating linear layer)
Generate views of each parties
Generate the first challenge by hashing the commitments and the
corrections
Check whether the views correctly check multiplications
e Get output shares of multiplication check protocol



AlMer Sign

. Instantiate AIM2 (generating linear layer)
. Generate views of each parties

. Generate the first challenge by hashing the commitments and the
corrections

. Check whether the views correctly check multiplications
. Generate the second challenge by hashing output share



[ERN

»

AlMer Sign

Instantiate AIM2 (generating linear layer)
Generate views of each parties

Generate the first challenge by hashing the commitments and the
corrections

Check whether the views correctly check multiplications
Generate the second challenge by hashing output share
Reveal all seeds except the challenge seed (GGM copath)



N =

S

AlMer Sign

Instantiate AIM2 (generating linear layer)
Generate views of each parties

Generate the first challenge by hashing the commitments and the
corrections

Check whether the views correctly check multiplications
Generate the second challenge by hashing output share
Reveal all seeds except the challenge seed (GGM copath)

Signature is (GGM copath, commitment to the hidden seeds,
corrections, challenge hashes, mult. check masking value)



AlMer Sign

(1. Party Simulation seed h (2. Multiplication triple generation
node; ; node; »
e N e N PRG(seed) = Witness(") Mult. triple(")
nodes ; node; o node, 3 node, 4 :
J ¥ { ¥ J ¥ { ¥ PRG(seed™) = Witness™) Mult. triple®)
seed®) seed® seed® seed”) seed™ seed® seed™ seed® . .
¢ i ¢ ¢ ¢ ¢ i ¢ +AWitness +AMult. triple
com™® com® com® com® com® com® com(” com(®)
I\ J L
( 3. Proof sk h (4. Party Opening
¥
MultCheck($,| |, ) Prove ,
= Output shares Choosei=H( )
¥
pk
I\ J L




Structure of AlMer Verification

e Recompute Phase 1-4 and check whether the second challenge is same

e Commitments to the hidden seeds are in the signature



AlMer Verification

e |nstantiate AIM2

e Recompute Phase 1&2
® Reconstruct opened seeds by using GGM copath
® Reconstruct views of the opened parties using opened seeds

® Recomputed opened commitments, and recompute the first challenge
hash



AlMer Verification

e |nstantiate AIM2

e Recompute Phase 1&2
® Reconstruct opened seeds by using GGM copath
® Reconstruct views of the opened parties using opened seeds
® Recomputed opened commitments, and recompute the first challenge
hash
e Recompute Phase 3&4

® Recompute multiplication check protocol for opened parties and get
output share of hidden party

® Recompute the second challenge



AlMer Verification

Instantiate AIM2

Recompute Phase 1&2
® Reconstruct opened seeds by using GGM copath
® Reconstruct views of the opened parties using opened seeds
® Recomputed opened commitments, and recompute the first challenge
hash
Recompute Phase 3&4

® Recompute multiplication check protocol for opened parties and get
output share of hidden party

® Recompute the second challenge

Accept if the second challenges are same, reject otherwise



AlMer Verification

(1. Party Simulation seed h (2. Multiplication triple generation
node; ; node; >
e N e N PRG(seed) = Witness(") Mult. triple(")
nodes ; node; o node, 3 node, 4 :
J ¥ { ¥ J ¥ l ¥ PRG(seed™) = Witness™) Mult. triple®)
seed®) seed® seed® seed”) seed™ seed® seed™ seed® . .
¢ i ¢ ¢ ¢ ¢ i ¢ +AWitness +AMult. triple
com™® com® com® com® com® com® com(” com(®)
I\ J L
( 3. Proof sk h (4. Party Opening
¥
MultCheck($,| |, ) Prove ,
= Output shares Choose i = H( )
¥
pk
I\ J L




Notes on Standard Document



Function Call Map: KeyGen

e AlMer_keygen - AlMer_keygen_internal
o AIM2
® AIM2_GenerateLinear



Function Call Map: Sign/ Verify

¢ AlMer_sign - AlMer_sign_internal
e Hash: Hy,..., Hs, ExpandH1, ExpandH2
AIM2_SboxOutputs

AIM2_GeneratelLinear
ExpandTree / ReconstructTree
® Hash function H,

AIM2_MPC
RevealAllBut



Some Added Details



Some Added Details

e Explicitly written exponents and constants



Some Added Details

e Explicitly written exponents and constants

e Qutput size and format of hash functions



Some Added Details

e Explicitly written exponents and constants
e Qutput size and format of hash functions

¢ How to generate random numbers: DRBG



Some Added Details

Explicitly written exponents and constants
Output size and format of hash functions
How to generate random numbers: DRBG

Data conversion (bitstring <+ integer)



Some Added Details

Explicitly written exponents and constants
Output size and format of hash functions
How to generate random numbers: DRBG
Data conversion (bitstring <+ integer)

Finite field, matrix-vector multiplication pseudocode



Some Added Details

Explicitly written exponents and constants

Output size and format of hash functions

How to generate random numbers: DRBG

Data conversion (bitstring <+ integer)

Finite field, matrix-vector multiplication pseudocode
AIM2_SboxOutputs function



Some Added Details

Explicitly written exponents and constants

Output size and format of hash functions

How to generate random numbers: DRBG

Data conversion (bitstring <+ integer)

Finite field, matrix-vector multiplication pseudocode
AIM2_SboxOutputs function

Multiplication check protocol details



Some Notes

e Standard document is mainly written using bitstring, which may be
quite different in word-based implementation

¢ We don’t use “byte” in the document. When using bytes in the real
implementation, please be careful on byte order



Some Notes

e Standard document is mainly written using bitstring, which may be
quite different in word-based implementation

¢ We don’t use “byte” in the document. When using bytes in the real
implementation, please be careful on byte order

e Asin Specification v2.1, we only use SHAKE rather than SHA2/3 for
hash functions



Some Notes

Standard document is mainly written using bitstring, which may be
quite different in word-based implementation

We don’t use “byte” in the document. When using bytes in the real
implementation, please be careful on byte order

As in Specification v2.1, we only use SHAKE rather than SHA2/3 for
hash functions

Unlike ML-DSA/SLH-DSA, we don’t have pre-hash variant



Changes



Changes from AlMer v2.1

e Prefix byte of H,: Ox00 — 0x00,...,0x50

* |f message digest is same, a signer may generate same views throughout
different parameter sets



Changes from AlMer v2.1

e Prefix byte of H,: Ox00 — 0x00,...,0x50
* |f message digest is same, a signer may generate same views throughout
different parameter sets
¢ Divide into internal/external functions
¢ |nternal function: deterministic, for debugging
e External function: (possibly) probabilistic, for use



Changes from AlMer v2.1

e Prefix byte of H,: Ox00 — 0x00,...,0x50

* |f message digest is same, a signer may generate same views throughout
different parameter sets

¢ Divide into internal/external functions
¢ |nternal function: deterministic, for debugging
e External function: (possibly) probabilistic, for use

e Remove ExpandlV function



Changes from AlMer v2.1

Prefix byte of H,: 0x00 — 0x00,...,0x50

* |f message digest is same, a signer may generate same views throughout
different parameter sets

Divide into internal/external functions
¢ |nternal function: deterministic, for debugging
e External function: (possibly) probabilistic, for use

Remove ExpandlV function

Now index of arrays starts at O rather than 1



Changes from AlMer v2.1

Prefix byte of H,: 0x00 — 0x00,...,0x50

* |f message digest is same, a signer may generate same views throughout
different parameter sets

Divide into internal/external functions
¢ |nternal function: deterministic, for debugging
e External function: (possibly) probabilistic, for use

Remove ExpandlV function
Now index of arrays starts at O rather than 1

Now a context string is inputted to Sign/Verify similarly to ML-DSA



Name Changes from AlMer v2.1

ReconstructSeedTree — ReconstructTree
KeyGen — AlMer_keygen

Sign — AlMer_sign

Verify — AlMer_verify

GenerateLinear — AIM2_GenerateLinear



Q&A



