
AIMer Standard Format
KpqC Conference (2025.11)

Seongkwang Kim

Samsung SDS



Recap of AIMer



AIM2

Mer[e1]
−1

Mer[e2]
−1

Mer[e3]
−1 Mer[e]−1(x) = x(2e−1)−1

Linpt

γ1

γ2

γ3

Mer[e∗] ct

XOF[iv]



AIMer KeyGen

1. Sample pt, iv←$ {0, 1}λ

2. Compute AIM2(pt, iv) = ct

3. Set sk = (pt, iv, ct), pk = (iv, ct)



Structure of AIMer Sign

• 5-round Challenge-Response structure
• Challenges are generated using Fiat-Shamir transform
• Phase 1, 3, 5 are repeated τ times, and each repetition computes views
of N parties

• In Phase 2, 4, a single digest is generated by hashing all τ responses,
and is expanded to challenges of specific length



AIMer Sign

0. Instantiate AIM2 (generating linear layer)

1. Generate views of each parties

• Generate each party’s seed by using GGM tree
• Random views are genereted from PRG fed by the seeds
• Compute the corrections between the random views and the real values
• Commit to the seeds



AIMer Sign

0. Instantiate AIM2 (generating linear layer)

1. Generate views of each parties

2. Generate the first challenge by hashing the commitments and the

corrections

3. Check whether the views correctly check multiplications

• Get output shares of multiplication check protocol



AIMer Sign

0. Instantiate AIM2 (generating linear layer)

1. Generate views of each parties

2. Generate the first challenge by hashing the commitments and the

corrections

3. Check whether the views correctly check multiplications

• Get output shares of multiplication check protocol



AIMer Sign

0. Instantiate AIM2 (generating linear layer)

1. Generate views of each parties

2. Generate the first challenge by hashing the commitments and the

corrections

3. Check whether the views correctly check multiplications

4. Generate the second challenge by hashing output share

5. Reveal all seeds except the challenge seed (GGM copath)

6. Signature is (GGM copath, commitment to the hidden seeds,

corrections, challenge hashes, mult. check masking value)



AIMer Sign

0. Instantiate AIM2 (generating linear layer)

1. Generate views of each parties

2. Generate the first challenge by hashing the commitments and the

corrections

3. Check whether the views correctly check multiplications

4. Generate the second challenge by hashing output share

5. Reveal all seeds except the challenge seed (GGM copath)

6. Signature is (GGM copath, commitment to the hidden seeds,

corrections, challenge hashes, mult. check masking value)



AIMer Sign

0. Instantiate AIM2 (generating linear layer)

1. Generate views of each parties

2. Generate the first challenge by hashing the commitments and the

corrections

3. Check whether the views correctly check multiplications

4. Generate the second challenge by hashing output share

5. Reveal all seeds except the challenge seed (GGM copath)

6. Signature is (GGM copath, commitment to the hidden seeds,

corrections, challenge hashes, mult. check masking value)



AIMer Sign
1. Party Simulation

seed

node1,1 node1,2

node2,1 node2,2 node2,3 node2,4

seed
(1)
seed

(2)
seed

(3)
seed

(4)
seed

(5)
seed

(6)
seed

(7)
seed

(8)

com(1) com(2) com(3) com(4) com(5) com(6) com(7) com(8)

2. Multiplication triple generation

PRG(seed(1)) = Witness(1) Mult. triple(1)

...

PRG(seed(N)) = Witness(N) Mult. triple(N)

+∆Witness +∆Mult. triple

3. Proof

MultCheck($, W , W )

= Output shares
AIM2

sk

pk

prove

4. Party Opening

Choose i = H(W )



Structure of AIMer Verification

• Recompute Phase 1-4 and check whether the second challenge is same
• Commitments to the hidden seeds are in the signature



AIMer Verification

• Instantiate AIM2
• Recompute Phase 1&2

• Reconstruct opened seeds by using GGM copath
• Reconstruct views of the opened parties using opened seeds
• Recomputed opened commitments, and recompute the first challenge
hash

• Recompute Phase 3&4
• Recompute multiplication check protocol for opened parties and get
output share of hidden party

• Recompute the second challenge

• Accept if the second challenges are same, reject otherwise



AIMer Verification

• Instantiate AIM2
• Recompute Phase 1&2

• Reconstruct opened seeds by using GGM copath
• Reconstruct views of the opened parties using opened seeds
• Recomputed opened commitments, and recompute the first challenge
hash

• Recompute Phase 3&4
• Recompute multiplication check protocol for opened parties and get
output share of hidden party

• Recompute the second challenge

• Accept if the second challenges are same, reject otherwise



AIMer Verification

• Instantiate AIM2
• Recompute Phase 1&2

• Reconstruct opened seeds by using GGM copath
• Reconstruct views of the opened parties using opened seeds
• Recomputed opened commitments, and recompute the first challenge
hash

• Recompute Phase 3&4
• Recompute multiplication check protocol for opened parties and get
output share of hidden party

• Recompute the second challenge

• Accept if the second challenges are same, reject otherwise



AIMer Verification
1. Party Simulation

seed

node1,1 node1,2

node2,1 node2,2 node2,3 node2,4

seed
(1)
seed

(2)
seed

(3)
seed

(4)
seed

(5)
seed

(6)
seed

(7)
seed

(8)

com(1) com(2) com(3) com(4) com(5) com(6) com(7) com(8)

2. Multiplication triple generation

PRG(seed(1)) = Witness(1) Mult. triple(1)

...

PRG(seed(N)) = Witness(N) Mult. triple(N)

+∆Witness +∆Mult. triple

3. Proof

MultCheck($, W , W )

= Output shares
AIM2

sk

pk

prove

4. Party Opening

Choose i = H(W )



Notes on Standard Document



Function Call Map: KeyGen

• AIMer_keygen - AIMer_keygen_internal
• AIM2

• AIM2_GenerateLinear



Function Call Map: Sign/Verify

• AIMer_sign - AIMer_sign_internal
• Hash: H0, . . . , H5, ExpandH1, ExpandH2

• AIM2_SboxOutputs
• AIM2_GenerateLinear
• ExpandTree / ReconstructTree

• Hash function H4

• AIM2_MPC
• RevealAllBut



Some Added Details

• Explicitly written exponents and constants
• Output size and format of hash functions
• How to generate random numbers: DRBG
• Data conversion (bitstring↔ integer)

• Finite field, matrix-vector multiplication pseudocode
• AIM2_SboxOutputs function
• Multiplication check protocol details



Some Added Details

• Explicitly written exponents and constants

• Output size and format of hash functions
• How to generate random numbers: DRBG
• Data conversion (bitstring↔ integer)

• Finite field, matrix-vector multiplication pseudocode
• AIM2_SboxOutputs function
• Multiplication check protocol details



Some Added Details

• Explicitly written exponents and constants
• Output size and format of hash functions

• How to generate random numbers: DRBG
• Data conversion (bitstring↔ integer)

• Finite field, matrix-vector multiplication pseudocode
• AIM2_SboxOutputs function
• Multiplication check protocol details



Some Added Details

• Explicitly written exponents and constants
• Output size and format of hash functions
• How to generate random numbers: DRBG

• Data conversion (bitstring↔ integer)

• Finite field, matrix-vector multiplication pseudocode
• AIM2_SboxOutputs function
• Multiplication check protocol details



Some Added Details

• Explicitly written exponents and constants
• Output size and format of hash functions
• How to generate random numbers: DRBG
• Data conversion (bitstring↔ integer)

• Finite field, matrix-vector multiplication pseudocode
• AIM2_SboxOutputs function
• Multiplication check protocol details



Some Added Details

• Explicitly written exponents and constants
• Output size and format of hash functions
• How to generate random numbers: DRBG
• Data conversion (bitstring↔ integer)

• Finite field, matrix-vector multiplication pseudocode

• AIM2_SboxOutputs function
• Multiplication check protocol details



Some Added Details

• Explicitly written exponents and constants
• Output size and format of hash functions
• How to generate random numbers: DRBG
• Data conversion (bitstring↔ integer)

• Finite field, matrix-vector multiplication pseudocode
• AIM2_SboxOutputs function

• Multiplication check protocol details



Some Added Details

• Explicitly written exponents and constants
• Output size and format of hash functions
• How to generate random numbers: DRBG
• Data conversion (bitstring↔ integer)

• Finite field, matrix-vector multiplication pseudocode
• AIM2_SboxOutputs function
• Multiplication check protocol details



Some Notes

• Standard document is mainly written using bitstring,which may be
quite different in word-based implementation

• We don’t use “byte” in the document. When using bytes in the real

implementation, please be careful on byte order

• As in Specification v2.1,we only use SHAKE rather than SHA2/3 for

hash functions

• Unlike ML-DSA/SLH-DSA, we don’t have pre-hash variant



Some Notes

• Standard document is mainly written using bitstring,which may be
quite different in word-based implementation

• We don’t use “byte” in the document. When using bytes in the real

implementation, please be careful on byte order

• As in Specification v2.1,we only use SHAKE rather than SHA2/3 for

hash functions

• Unlike ML-DSA/SLH-DSA, we don’t have pre-hash variant



Some Notes

• Standard document is mainly written using bitstring,which may be
quite different in word-based implementation

• We don’t use “byte” in the document. When using bytes in the real

implementation, please be careful on byte order

• As in Specification v2.1,we only use SHAKE rather than SHA2/3 for

hash functions

• Unlike ML-DSA/SLH-DSA, we don’t have pre-hash variant



Changes



Changes fromAIMer v2.1

• Prefix byte ofH0: 0x00→ 0x00,...,0x50

• If message digest is same, a signer may generate same views throughout
different parameter sets

• Divide into internal/external functions
• Internal function: deterministic, for debugging
• External function: (possibly) probabilistic, for use

• Remove ExpandIV function
• Now index of arrays starts at 0 rather than 1
• Now a context string is inputted to Sign/Verify similarly to ML-DSA



Changes fromAIMer v2.1

• Prefix byte ofH0: 0x00→ 0x00,...,0x50

• If message digest is same, a signer may generate same views throughout
different parameter sets

• Divide into internal/external functions
• Internal function: deterministic, for debugging
• External function: (possibly) probabilistic, for use

• Remove ExpandIV function
• Now index of arrays starts at 0 rather than 1
• Now a context string is inputted to Sign/Verify similarly to ML-DSA



Changes fromAIMer v2.1

• Prefix byte ofH0: 0x00→ 0x00,...,0x50

• If message digest is same, a signer may generate same views throughout
different parameter sets

• Divide into internal/external functions
• Internal function: deterministic, for debugging
• External function: (possibly) probabilistic, for use

• Remove ExpandIV function

• Now index of arrays starts at 0 rather than 1
• Now a context string is inputted to Sign/Verify similarly to ML-DSA



Changes fromAIMer v2.1

• Prefix byte ofH0: 0x00→ 0x00,...,0x50

• If message digest is same, a signer may generate same views throughout
different parameter sets

• Divide into internal/external functions
• Internal function: deterministic, for debugging
• External function: (possibly) probabilistic, for use

• Remove ExpandIV function
• Now index of arrays starts at 0 rather than 1

• Now a context string is inputted to Sign/Verify similarly to ML-DSA



Changes fromAIMer v2.1

• Prefix byte ofH0: 0x00→ 0x00,...,0x50

• If message digest is same, a signer may generate same views throughout
different parameter sets

• Divide into internal/external functions
• Internal function: deterministic, for debugging
• External function: (possibly) probabilistic, for use

• Remove ExpandIV function
• Now index of arrays starts at 0 rather than 1
• Now a context string is inputted to Sign/Verify similarly to ML-DSA



Name Changes fromAIMer v2.1

• ReconstructSeedTree→ ReconstructTree

• KeyGen→ AIMer_keygen
• Sign→ AIMer_sign
• Verify→ AIMer_verify
• GenerateLinear→ AIM2_GenerateLinear



Q&A


