
Signature Schemes based on
the MPC-in-the-Head Paradigm

Seongkwang Kim

Samsung SDS

Ewha-KMS IWC 2023

MPC-in-the-Head Paradigm

Secure Multiparty Computation

• Multiparty computation (MPC) enables a computation while preserving
privacy
• Yao’s garbled circuit
• Additive secret sharing (GMW, Beaver triple)
• Shamir secret sharing

𝑓

Secure Multiparty Computation

• Multiparty computation (MPC) enables a computation while preserving
privacy
• Yao’s garbled circuit
• Additive secret sharing (GMW, Beaver triple)
• Shamir secret sharing

• Additive secret sharing
• Secret is shared additively: 𝑥 = σ𝑖 𝑥

(𝑖)

• Addition is naturally compatible with shares

𝑥 + 𝑦 = ෍

𝑖

𝑥(𝑖) +෍

𝑖

𝑦(𝑖) =෍

𝑖

(𝑥 𝑖 +𝑦(𝑖))

• Multiplication needs a Beaver triple 𝑎(𝑖), 𝑏(𝑖), 𝑐(𝑖)
𝑖

s.t. 𝑐 = 𝑎𝑏

1. Compute 𝐴(𝑖) = 𝑥(𝑖) + 𝑎(𝑖), 𝐵(𝑖) = 𝑦(𝑖) + 𝑏(𝑖) and Open them

2. Locally compute 𝑧(𝑖) = 𝐴𝑦(𝑖) − 𝐵𝑎 𝑖 + 𝑐 𝑖 = 𝑥 + 𝑎 𝑦 𝑖 − 𝑦 + 𝑏 𝑎 𝑖 + 𝑐 𝑖 = 𝑥𝑦(𝑖)

𝑓

MPC-in-the-Head Paradigm

Prover Verifier

• Ishai et al. proposed a generic conversion
from MPC to ZKP

• Prover simulates a multiparty computation in
her head

MPC-in-the-Head Paradigm

Prover Verifier

1

2 3

𝑓

• Ishai et al. proposed a generic conversion
from MPC to ZKP

• Prover simulates a multiparty computation in
her head

1. Prover simulates a multiparty
computation of a function 𝑓

MPC-in-the-Head Paradigm

Prover Verifier

1

2 3

? ? ?

𝑓

• Ishai et al. proposed a generic conversion
from MPC to ZKP

• Prover simulates a multiparty computation in
her head

1. Prover simulates a multiparty
computation of a function 𝑓

2. Prover commits to all the views of the
parties

MPC-in-the-Head Paradigm

Prover Verifier

1

2 3

? ? ?

1, 3

𝑓

• Ishai et al. proposed a generic conversion
from MPC to ZKP

• Prover simulates a multiparty computation in
her head

1. Prover simulates a multiparty
computation of a function 𝑓

2. Prover commits to all the views of the
parties

3. Verifier sends a random challenge

MPC-in-the-Head Paradigm

Prover Verifier

1

2 3

? ? ?

1, 3

𝑓

• Ishai et al. proposed a generic conversion
from MPC to ZKP

• Prover simulates a multiparty computation in
her head

1. Prover simulates a multiparty
computation of a function 𝑓

2. Prover commits to all the views of the
parties

3. Verifier sends a random challenge
4. Prover opens the challenged view
5. Verifier checks consistency

MPC-in-the-Head Paradigm (Simplified)

𝑥

𝑓1

𝐼1

𝑓2

𝐼2

𝑦

𝑥

𝑓1
(2)

𝑤1
(2)

𝑦

𝑤0
(1) 𝑤0

(2)
𝑤0
(3)

𝑓1
(1)

𝑓1
(3)

𝑤1
(1)

𝑤1
(3)

𝑓2
(2)

𝑤2
(2)

𝑓2
(1)

𝑓2
(3)

𝑤2
(1)

𝑤2
(3)

𝑦(1) 𝑦(2) 𝑦(3)

Want to prove a
knowledge of 𝑥 such that
𝑓 𝑥 = 𝑦

MPC-in-the-Head Paradigm (Simplified)

𝑥

𝑓1
(2)

𝑤1
(2)

𝑦

𝑤0
(1) 𝑤0

(2)
𝑤0
(3)

𝑓1
(1)

𝑓1
(3)

𝑤1
(1)

𝑤1
(3)

𝑓2
(2)

𝑤2
(2)

𝑓2
(1)

𝑓2
(3)

𝑤2
(1)

𝑤2
(3)

𝑦(1) 𝑦(2) 𝑦(3)

𝐶1

Commit the views

MPC-in-the-Head Paradigm (Simplified)

𝑥

𝑓1
(2)

𝑤1
(2)

𝑦

𝑤0
(1) 𝑤0

(2)
𝑤0
(3)

𝑓1
(1)

𝑓1
(3)

𝑤1
(1)

𝑤1
(3)

𝑓2
(2)

𝑤2
(2)

𝑓2
(1)

𝑓2
(3)

𝑤2
(1)

𝑤2
(3)

𝑦(1) 𝑦(2) 𝑦(3)
𝐶2

Commit the views

MPC-in-the-Head Paradigm (Simplified)

𝑥

𝑓1
(2)

𝑤1
(2)

𝑦

𝑤0
(1) 𝑤0

(2)
𝑤0
(3)

𝑓1
(1)

𝑓1
(3)

𝑤1
(1)

𝑤1
(3)

𝑓2
(2)

𝑤2
(2)

𝑓2
(1)

𝑓2
(3)

𝑤2
(1)

𝑤2
(3)

𝑦(1) 𝑦(2) 𝑦(3)

𝐶3

Commit the views

MPC-in-the-Head Paradigm (Simplified)

𝑥

𝑓1
(2)

𝑤1
(2)

𝑦

𝑤0
(1) 𝑤0

(2)
𝑤0
(3)

𝑓1
(1)

𝑓1
(3)

𝑤1
(1)

𝑤1
(3)

𝑓2
(2)

𝑤2
(2)

𝑓2
(1)

𝑓2
(3)

𝑤2
(1)

𝑤2
(3)

𝑦(1) 𝑦(2) 𝑦(3)

𝐶4

Commit the
output shares

MPC-in-the-Head Paradigm (Simplified)

𝑥

𝑓1
(2)

𝑤1
(2)

𝑦

𝑤0
(1) 𝑤0

(2)
𝑤0
(3)

𝑓1
(1)

𝑓1
(3)

𝑤1
(1)

𝑤1
(3)

𝑓2
(2)

𝑤2
(2)

𝑓2
(1)

𝑓2
(3)

𝑤2
(1)

𝑤2
(3)

𝑦(1) 𝑦(2) 𝑦(3)

Send commits

𝐶1, 𝐶2, 𝐶3, 𝐶4

MPC-in-the-Head Paradigm (Simplified)

𝑥

𝑓1
(2)

𝑤1
(2)

𝑦

𝑤0
(1) 𝑤0

(2)
𝑤0
(3)

𝑓1
(1)

𝑓1
(3)

𝑤1
(1)

𝑤1
(3)

𝑓2
(2)

𝑤2
(2)

𝑓2
(1)

𝑓2
(3)

𝑤2
(1)

𝑤2
(3)

𝑦(1) 𝑦(2) 𝑦(3)

Random challenge

𝐶1, 𝐶2, 𝐶3, 𝐶4

𝑒 ∈ {1,2,3}

MPC-in-the-Head Paradigm (Simplified)

𝑥

𝑓1
(2)

𝑤1
(2)

𝑦

𝑤0
(1) 𝑤0

(2)
𝑤0
(3)

𝑓1
(1)

𝑓1
(3)

𝑤1
(1)

𝑤1
(3)

𝑓2
(2)

𝑤2
(2)

𝑓2
(1)

𝑓2
(3)

𝑤2
(1)

𝑤2
(3)

𝑦(1) 𝑦(2) 𝑦(3)

Send views

𝐶1, 𝐶2, 𝐶3, 𝐶4

𝑒 ∈ {1,2,3}

View𝑒+1, View𝑒+2

MPC-in-the-Head Paradigm (Simplified)

𝑥

𝑓1
(2)

𝑤1
(2)

𝑦

𝑤0
(1) 𝑤0

(2)
𝑤0
(3)

𝑓1
(1)

𝑓1
(3)

𝑤1
(1)

𝑤1
(3)

𝑓2
(2)

𝑤2
(2)

𝑓2
(1)

𝑓2
(3)

𝑤2
(1)

𝑤2
(3)

𝑦(1) 𝑦(2) 𝑦(3)

Check Consistency

𝐶1, 𝐶2, 𝐶3, 𝐶4

𝑒 ∈ {1,2,3}

Commit View𝑒+1 = 𝐶𝑒+1
Commit View𝑒+2 = 𝐶𝑒+2

View𝑒+1 → 𝑦(𝑒+1)

View𝑒+2 → 𝑦(𝑒+2)

𝑦(𝑒) = 𝑦 − 𝑦(𝑒+1) − 𝑦(𝑒+2)

Commit 𝑦(1), 𝑦(2), 𝑦(3) = 𝐶4

View𝑒+1, View𝑒+2

MPC-in-the-Head Paradigm (Simplified)

𝑥

𝑓1
(2)

𝑤1
(2)

𝑦

𝑤0
(1) 𝑤0

(2)
𝑤0
(3)

𝑓1
(1)

𝑓1
(3)

𝑤1
(1)

𝑤1
(3)

𝑓2
(2)

𝑤2
(2)

𝑓2
(1)

𝑓2
(3)

𝑤2
(1)

𝑤2
(3)

𝑦(1) 𝑦(2) 𝑦(3)

Check Consistency

𝐶1, 𝐶2, 𝐶3, 𝐶4

𝑒 ∈ {1,2,3}

Commit View𝑒+1 = 𝐶𝑒+1
Commit View𝑒+2 = 𝐶𝑒+2

View𝑒+1 → 𝑦(𝑒+1)

View𝑒+2 → 𝑦(𝑒+2)

𝑦(𝑒) = 𝑦 − 𝑦(𝑒+1) − 𝑦(𝑒+2)

Commit 𝑦(1), 𝑦(2), 𝑦(3) = 𝐶4

View𝑒+1, View𝑒+2

MPC-in-the-Head Paradigm (Simplified)

𝑥

𝑓1
(2)

𝑤1
(2)

𝑦

𝑤0
(1) 𝑤0

(2)
𝑤0
(3)

𝑓1
(1)

𝑓1
(3)

𝑤1
(1)

𝑤1
(3)

𝑓2
(2)

𝑤2
(2)

𝑓2
(1)

𝑓2
(3)

𝑤2
(1)

𝑤2
(3)

𝑦(1) 𝑦(2) 𝑦(3)

Check Consistency

𝐶1, 𝐶2, 𝐶3, 𝐶4

𝑒 ∈ {1,2,3}

Commit View𝑒+1 = 𝐶𝑒+1
Commit View𝑒+2 = 𝐶𝑒+2

View𝑒+1 → 𝑦(𝑒+1)

View𝑒+2 → 𝑦(𝑒+2)

𝑦(𝑒) = 𝑦 − 𝑦(𝑒+1) − 𝑦(𝑒+2)

Commit 𝑦(1), 𝑦(2), 𝑦(3) = 𝐶4

View𝑒+1, View𝑒+2

MPC-in-the-Head Paradigm (Simplified)

𝑥

𝑓1
(2)

𝑤1
(2)

𝑦

𝑤0
(1) 𝑤0

(2)
𝑤0
(3)

𝑓1
(1)

𝑓1
(3)

𝑤1
(1)

𝑤1
(3)

𝑓2
(2)

𝑤2
(2)

𝑓2
(1)

𝑓2
(3)

𝑤2
(1)

𝑤2
(3)

𝑦(1) 𝑦(2) 𝑦(3)

“Soundness error”
Probability to pass: 1/3

𝐶1, 𝐶2, 𝐶3, 𝐶4

𝑒 ∈ {1,2,3}

Forger

View𝑒+1, View𝑒+2

Commit View𝑒+1 = 𝐶𝑒+1
Commit View𝑒+2 = 𝐶𝑒+2

View𝑒+1 → 𝑦(𝑒+1)

View𝑒+2 → 𝑦(𝑒+2)

𝑦(𝑒) = 𝑦 − 𝑦(𝑒+1) − 𝑦(𝑒+2)

Commit 𝑦(1), 𝑦(2), 𝑦(3) = 𝐶4

MPC-in-the-Head Paradigm (Simplified)

𝑥

𝑓1
(2)

𝑤1
(2)

𝑦

𝑤0
(1) 𝑤0

(2)
𝑤0
(3)

𝑓1
(1)

𝑓1
(3)

𝑤1
(1) 𝑤1

(3)

𝑓2
(2)

𝑤2
(2)

𝑓2
(1)

𝑓2
(3)

𝑤2
(1)

𝑤2
(3)

𝑦(1) 𝑦(2) 𝑦(3)

Soundness error: 1/3

𝐶1, 𝐶2, 𝐶3, 𝐶4

𝑒 ∈ {1,2,3}

View𝑒+1, View𝑒+2

Repeat several times for security

Commit View𝑒+1 = 𝐶𝑒+1
Commit View𝑒+2 = 𝐶𝑒+2

View𝑒+1 → 𝑦(𝑒+1)

View𝑒+2 → 𝑦(𝑒+2)

𝑦(𝑒) = 𝑦 − 𝑦(𝑒+1) − 𝑦(𝑒+2)

Commit 𝑦(1), 𝑦(2), 𝑦(3) = 𝐶4

MPCitH-based Signature (Simplified)

𝑥

𝑓1
(2)

𝑤1
(2)

𝑦

𝑤0
(1) 𝑤0

(2)
𝑤0
(3)

𝑓1
(1)

𝑓1
(3)

𝑤1
(1)

𝑤1
(3)

𝑓2
(2)

𝑤2
(2)

𝑓2
(1)

𝑓2
(3)

𝑤2
(1)

𝑤2
(3)

𝑦(1) 𝑦(2) 𝑦(3)

𝐶1, 𝐶2, 𝐶3, 𝐶4

𝑒 ← 𝐻(𝐶1, 𝐶2, 𝐶3, 𝐶4)

sig = View𝑒+1, View𝑒+2

Fiat-Shamir transform
𝑓(𝐾) = 𝐸𝐾(𝑚)

Previous Works

Brief History

Proof system

Symmetric primitive

[IKOS07]
MPC-in-the-Head
STOC 2007

[GMO16]
ZKBoo
Usenix 2016

[ARS+15]
LowMC
Eurocrypt 2015

[CDG+17]
Picnic1
CCS 2017

[KKW18]
KKW (Picnic 2,3)
CCS 2018

[dSGMOS19]
BBQ
SAC 2019

[BdSGK+21]
Banquet
PKC 2021

[DKR+22]
Rainier
CCS 2022

[KZ22]
BN++/Helium
ePrint 2022

[KHS+23]
AIMer
CCS 2023

Signature based on:

FIPS primitives

Non-FIPS primitives

Brief History

Proof system

Symmetric primitive

[IKOS07]
MPC-in-the-Head
STOC 2007

[GMO16]
ZKBoo
Usenix 2016

[ARS+15]
LowMC
Eurocrypt 2015

[CDG+17]
Picnic1
CCS 2017

[KKW18]
KKW (Picnic 2,3)
CCS 2018

[dSGMOS19]
BBQ
SAC 2019

[BdSGK+21]
Banquet
PKC 2021

[DKR+22]
Rainier
CCS 2022

[KZ22]
BN++/Helium
ePrint 2022

[KHS+23]
AIMer
CCS 2023

Signature based on:

FIPS primitives

Non-FIPS primitives

MPCitH + PKC

MQ SDitH

MinRank
SIS

Picnic1

• Picnic1 = ZKB++ (optimized ZKBoo) + Fiat-Shamir transform + LowMC

ZKB++
• (2,3)-circuit decomposition
• No multiplication triple
• 3-party fixed, large number

of repetition

𝑓1
(2)

𝑤1
(2)

𝑤0
(1) 𝑤0

(2)
𝑤0
(3)

𝑓1
(1)

𝑓1
(3)

𝑤1
(1)

𝑤1
(3)

Picnic1

• Picnic1 = ZKB++ (optimized ZKBoo) + Fiat-Shamir transform + LowMC

ZKB++
• (2,3)-circuit decomposition
• No multiplication triple
• 3-party fixed, large number

of repetition

FS transform
• Interactive ZK → NIZK
• QROM security is later

proved: Unruh → FS

𝑓1
(2)

𝑤1
(2)

𝑤0
(1) 𝑤0

(2)
𝑤0
(3)

𝑓1
(1)

𝑓1
(3)

𝑤1
(1)

𝑤1
(3)

Picnic1

• Picnic1 = ZKB++ (optimized ZKBoo) + Fiat-Shamir transform + LowMC

ZKB++
• (2,3)-circuit decomposition
• No multiplication triple
• 3-party fixed, large number

of repetition

FS transform
• Interactive ZK → NIZK
• QROM security is later

proved: Unruh → FS

LowMC
• Cipher for MPC/FHE/ZKP
• Low number of AND gates
• 3-bit S-box, random affine
• Reduced parameter sets

𝑓1
(2)

𝑤1
(2)

𝑤0
(1) 𝑤0

(2)
𝑤0
(3)

𝑓1
(1)

𝑓1
(3)

𝑤1
(1)

𝑤1
(3)

Picnic1

• Picnic1 = ZKB++ (optimized ZKBoo) + Fiat-Shamir transform + LowMC

ZKB++
• (2,3)-circuit decomposition
• No multiplication triple
• 3-party fixed, large number

of repetition

FS transform
• Interactive ZK → NIZK
• QROM security is later

proved: Unruh → FS

LowMC
• Cipher for MPC/FHE/ZKP
• Low number of AND gates
• 3-bit S-box, random affine
• Reduced parameter sets

𝑓1
(2)

𝑤1
(2)

𝑤0
(1) 𝑤0

(2)
𝑤0
(3)

𝑓1
(1)

𝑓1
(3)

𝑤1
(1)

𝑤1
(3)

Scheme pk (B) sig (B) Sign (ms) Verify (ms)

Picnic1-L1-full 32 30925 1.16 0.91

Performance

KKW Proof System (Picnic3)

• Picnic3 = KKW NIZK proof of knowledge + LowMC

• Poor soundness of 3-party → use preprocessing model to simulate N parties!

KKW Proof System (Picnic3)

• Picnic3 = KKW NIZK proof of knowledge + LowMC

• Poor soundness of 3-party → use preprocessing model to simulate N parties!

MPCitH with (2,3)-decomposition
• 2-party secure channel model
• No multiplication triple needed
• 3-party fixed, large number of repetition

MPCitH with preprocessing
• N-party broadcast model
• Prover generates multiplication triples

and commit to them
• Checking consistency by opening some

of triples
• #parties↑, #repetitions↓

KKW Proof System (Picnic3)

• Picnic3 = KKW NIZK proof of knowledge + LowMC

• Poor soundness of 3-party → use preprocessing model to simulate N parties!

MPCitH with (2,3)-decomposition
• 2-party secure channel model
• No multiplication triple needed
• 3-party fixed, large number of repetition

MPCitH with preprocessing
• N-party broadcast model
• Prover generates multiplication triples

and commit to them
• Checking consistency by opening some

of triples
• #parties↑, #repetitions↓

Preprocessing N-party MPC

𝑎1
𝑖
, 𝑏1

𝑖
, 𝑐1

𝑖

⋮

𝑎𝜏
𝑖
, 𝑏𝜏

𝑖
, 𝑐𝜏

𝑖

Cut&Choose Commit&Open

KKW Proof System (Picnic3)

• Picnic3 = KKW NIZK proof of knowledge + LowMC

• Poor soundness of 3-party → use preprocessing model to simulate N parties!

MPCitH with (2,3)-decomposition
• 2-party secure channel model
• No multiplication triple needed
• 3-party fixed, large number of repetition

MPCitH with preprocessing
• N-party broadcast model
• Prover generates multiplication triples

and commit to them
• Checking consistency by opening some

of triples
• #parties↑, #repetitions↓

Scheme pk (B) sig (B) Sign (ms) Verify (ms)

Picnic1-L1-full 32 30925 1.16 0.91

Picnic3 32 12463 5.83 4.24

Performance

Preprocessing N-party MPC

𝑎1
𝑖
, 𝑏1

𝑖
, 𝑐1

𝑖

⋮

𝑎𝜏
𝑖
, 𝑏𝜏

𝑖
, 𝑐𝜏

𝑖

Cut&Choose Commit&Open

BBQ Signature Scheme

• BBQ = KKW with 𝔽28 multiplication triples + AES

BBQ Signature Scheme

• BBQ = KKW with 𝔽28 multiplication triples + AES

• Motivation
• LowMC is not solid compared to AES
• AES has too much ANDs (LowMC = 600 ANDs, AES = 6400 ANDs)
• Arithmetic inversion leads to 40% smaller signature size

Boolean circuit

𝑥−1

Arithmetic circuit

BBQ Signature Scheme

• BBQ = KKW with 𝔽28 multiplication triples + AES

• Motivation
• LowMC is not solid compared to AES
• AES has too much ANDs (LowMC = 600 ANDs, AES = 6400 ANDs)
• Arithmetic inversion leads to 40% smaller signature size

Boolean circuit

𝑥−1

Arithmetic circuit

Scheme pk (B) sig (B) Sign (ms) Verify (ms)

Picnic1-L1-full 32 30925 1.16 0.91

Picnic3 32 12463 5.83 4.24

BBQ 32 31568 unknown unknown

Performance

Banquet Signature Scheme

• Banquet = Multiplication-checking protocol + AES

• Idea
• Cut-and-choose → Sacrificing technique with inverse injection

Preprocessing “Computation”

𝑎1
𝑖
, 𝑏1

𝑖
, 𝑐1

𝑖

⋮

𝑎𝜏
𝑖 , 𝑏𝜏

𝑖 , 𝑐𝜏
𝑖

Too many triples are wasted!

Previous work

𝑥−1

𝑚

𝑚−1

Sacrificing triples “Verification”

𝑎1
𝑖
, 𝑏1

𝑖
, 𝑐1

𝑖

⋮

𝑎𝜏
𝑖 , 𝑏𝜏

𝑖 , 𝑐𝜏
𝑖

No triples are wasted!

This work

𝑥−1

𝑚

c

𝑚𝑐 = 1?

Banquet Signature Scheme

• Banquet = Multiplication-checking protocol + AES

• Idea
• Cut-and-choose → Sacrificing technique with inverse injection
• Batching verification

𝑠1, 𝑡1, 1
⋮

𝑠𝑚, 𝑡𝑚, 1

𝑎1, 𝑏1, 𝑐1
⋮

𝑎𝑚, 𝑏𝑚, 𝑐𝑚

Sacrifice to verify 𝑆 1 = 𝑠1, 𝑇 1 = 𝑡1
⋮

𝑆 𝑚 = 𝑠𝑚 , 𝑇 1 = 𝑡𝑚
𝑃 = 𝑆 ⋅ 𝑇

half of 𝑃(𝑋)

(Kind of) Sacrifice

to verify
𝑃 𝑅 − 𝑆 𝑅 𝑇 𝑅 = 0

Soundness error = 2𝑚/|𝔽 − 𝑚|

3𝑚 elements 𝑚+ 1 elements

Banquet Signature Scheme

• Banquet = Multiplication-checking protocol + AES

• Idea
• Cut-and-choose → Sacrificing technique with inverse injection
• Batching verification

Scheme pk (B) sig (B) Sign (ms) Verify (ms)

Picnic1-L1-full 32 30925 1.16 0.91

Picnic3 32 12463 5.83 4.24

Banquet 32 19776 7.09 5.24

Performance

𝑠1, 𝑡1, 1
⋮

𝑠𝑚, 𝑡𝑚, 1

𝑎1, 𝑏1, 𝑐1
⋮

𝑎𝑚, 𝑏𝑚, 𝑐𝑚

Sacrifice to verify 𝑆 1 = 𝑠1, 𝑇 1 = 𝑡1
⋮

𝑆 𝑚 = 𝑠𝑚 , 𝑇 1 = 𝑡𝑚
𝑃 = 𝑆 ⋅ 𝑇

half of 𝑃(𝑋)

(Kind of) Sacrifice

to verify
𝑃 𝑅 − 𝑆 𝑅 𝑇 𝑅 = 0

Soundness error = 2𝑚/|𝔽 − 𝑚|

3𝑚 elements 𝑚+ 1 elements

Rainier Signature Scheme

• Rainier = Modified Banquet proof + New symmetric primitive Rain

• Motivation
• AES uses a small field, which occurs poor soundness
• Banquet already lifts 𝔽28 to 𝔽232 for soundness
• Inverse on a large field is not expensive in MPC

Rainier Signature Scheme

• Rainier = Modified Banquet proof + New symmetric primitive Rain

• Motivation
• AES uses a small field, which occurs poor soundness
• Banquet already lifts 𝔽28 to 𝔽232 for soundness
• Inverse on a large field is not expensive in MPC

• Cryptanalytic characteristic
• Large inverse and random matrix are used for algebraic attacks
• Statistical attacks are not much of our interest

𝑥−1 𝑀1 𝑥−1 𝑀1 𝑥−1𝑚

𝑘 ⊕ 𝑐1 𝑘

𝑐

𝑘 ⊕ 𝑐2 𝑘 ⊕ 𝑐3

Rain3

Rainier Signature Scheme

• Rainier = Modified Banquet proof + New symmetric primitive Rain

• Motivation
• AES uses a small field, which occurs poor soundness
• Banquet already lifts 𝔽28 to 𝔽232 for soundness
• Inverse on a large field is not expensive in MPC

• Cryptanalytic characteristic
• Large inverse and random matrix are used for algebraic attacks
• Statistical attacks are not much of our interest

𝑥−1 𝑀1 𝑥−1 𝑀1 𝑥−1𝑚

𝑘 ⊕ 𝑐1 𝑘

𝑐

𝑘 ⊕ 𝑐2 𝑘 ⊕ 𝑐3

Scheme pk (B) sig (B) Sign (ms) Verify (ms)

Picnic1-L1-full 32 30925 1.16 0.91

Picnic3 32 12463 5.83 4.24

Banquet 32 19776 7.09 5.24

Rainier3 32 8544 0.97 0.89

Rain3

Performance

BN++/Helium Proof System

• BN++: Optimization of BN protocol
• BN20: Sacrificing-based interactive proof protocol
• Remove needless broadcasts
• Repeated multiplier
• Known output share

𝑥 ⋅ 𝑦 = 𝑧

BN++/Helium Proof System

• BN++: Optimization of BN protocol
• BN20: Sacrificing-based interactive proof protocol
• Remove needless broadcasts
• Repeated multiplier
• Known output share

𝑥 ⋅ 𝑦 = 𝑧

BN++/Helium Proof System

• BN++: Optimization of BN protocol
• BN20: Sacrificing-based interactive proof protocol
• Remove needless broadcasts
• Repeated multiplier
• Known output share

• Helium: BN++ with RMFE (Reverse Multiplication-Friendly Embedding)
• Small field arithmetic has high soundness error
• Batch small field operations to a large field one

𝑥 ⋅ 𝑦 = 𝑧

BN++/Helium Proof System

• BN++: Optimization of BN protocol
• BN20: Sacrificing-based interactive proof protocol
• Remove needless broadcasts
• Repeated multiplier
• Known output share

• Helium: BN++ with RMFE (Reverse Multiplication-Friendly Embedding)
• Small field arithmetic has high soundness error
• Batch small field operations to a large field one

Scheme pk (B) sig (B) Sign (ms) Verify (ms)

Picnic1-L1-full 32 30925 1.16 0.91

Picnic3 32 12463 5.83 4.24

Banquet 32 19776 7.09 5.24

Rainier3 32 8544 0.97 0.89

BN++Rain3 32 6432 0.83 0.77

Helium-AES 32 9888 16.53 16.47

Performance

𝑥 ⋅ 𝑦 = 𝑧

The AIMer Signature Scheme

Motivation

• MPC(itH)-friendly symmetric primitives are advanced in directions of:
• S-boxes on large field
• Low multiplicative complexity

Motivation

• MPC(itH)-friendly symmetric primitives are advanced in directions of:
• S-boxes on large field
• Low multiplicative complexity

• Some symmetric primitives based on large S-boxes have been broken by algebraic
attacks
• MiMC (AC 16, AC 20)
• Agrasta (C 18, AC 21)
• Jarvis/Friday (ePrint 18, AC 19)
• Chaghri (CCS 22, EC 23)

Motivation

• MPC(itH)-friendly symmetric primitives are advanced in directions of:
• S-boxes on large field
• Low multiplicative complexity

• Some symmetric primitives based on large S-boxes have been broken by algebraic
attacks
• MiMC (AC 16, AC 20)
• Agrasta (C 18, AC 21)
• Jarvis/Friday (ePrint 18, AC 19)
• Chaghri (CCS 22, EC 23) Sufficient security

against
algebraic attacks

Best performance
when combined to

BN++

Inverse S-box

• Inverse S-box (𝑥 ↦ 𝑥−1) is widely used in MPC/ZKP-friendly ciphers
• High degree, but quadratic relation (𝑥𝑦 = 1)
• Invertible
• Nice DC/LC resistance
• But, produces many linearly independent quadratic equations

Inverse S-box

• Inverse S-box (𝑥 ↦ 𝑥−1) is widely used in MPC/ZKP-friendly ciphers
• High degree, but quadratic relation (𝑥𝑦 = 1)
• Invertible
• Nice DC/LC resistance
• But, produces many linearly independent quadratic equations

Inv𝑥 𝑦
𝑛

ቐ
𝑓1 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛 = 0

⋮
𝑓5𝑛 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛 = 0

5𝑛 quadratic equations

c.f. optimally 𝑛 equations

Inverse S-box

• Inverse S-box (𝑥 ↦ 𝑥−1) is widely used in MPC/ZKP-friendly ciphers
• High degree, but quadratic relation (𝑥𝑦 = 1)
• Invertible
• Nice DC/LC resistance
• But, produces many linearly independent quadratic equations

Inv𝑥 𝑦
𝑛

ቐ
𝑓1 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛 = 0

⋮
𝑓5𝑛 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛 = 0

5𝑛 quadratic equations

More equations lead to a
weaker resistance against

algebraic attacks!

c.f. optimally 𝑛 equations

Candidates of Appropriate S-box

• Niho exponent

• 𝑥 ↦ 𝑥2
𝑠+2𝑠/2−1 over 𝔽2𝑛, 𝑛 = 2𝑠 + 1

• 𝑛 equations, high-degree
• 2 multiplications, odd-length field

Candidates of Appropriate S-box

• Niho exponent

• 𝑥 ↦ 𝑥2
𝑠+2𝑠/2−1 over 𝔽2𝑛, 𝑛 = 2𝑠 + 1

• 𝑛 equations, high-degree
• 2 multiplications, odd-length field

• NGG exponent (Nawaz et al., 2009)
• 𝑥 ↦ 𝑥2

𝑠+1+2𝑠−1−1 over 𝔽2𝑛, 𝑛 = 2𝑠

• 2𝑛 equations, even-length field, good
DC/LC resistance

• 2 multiplications

Candidates of Appropriate S-box

• Niho exponent

• 𝑥 ↦ 𝑥2
𝑠+2𝑠/2−1 over 𝔽2𝑛, 𝑛 = 2𝑠 + 1

• 𝑛 equations, high-degree
• 2 multiplications, odd-length field

• NGG exponent (Nawaz et al., 2009)
• 𝑥 ↦ 𝑥2

𝑠+1+2𝑠−1−1 over 𝔽2𝑛, 𝑛 = 2𝑠

• 2𝑛 equations, even-length field, good
DC/LC resistance

• 2 multiplications

• Mersenne exponent
• 𝑥 ↦ 𝑥2

𝑠−1 over 𝔽2𝑛

• 3𝑛 equations, even-length field, single
multiplication

• moderate DC/LC resistance

Candidates of Appropriate S-box

• Niho exponent

• 𝑥 ↦ 𝑥2
𝑠+2𝑠/2−1 over 𝔽2𝑛, 𝑛 = 2𝑠 + 1

• 𝑛 equations, high-degree
• 2 multiplications, odd-length field

• NGG exponent (Nawaz et al., 2009)
• 𝑥 ↦ 𝑥2

𝑠+1+2𝑠−1−1 over 𝔽2𝑛, 𝑛 = 2𝑠

• 2𝑛 equations, even-length field, good
DC/LC resistance

• 2 multiplications

• Mersenne exponent
• 𝑥 ↦ 𝑥2

𝑠−1 over 𝔽2𝑛

• 3𝑛 equations, even-length field, single
multiplication

• moderate DC/LC resistance

• Gold exponent
• 𝑥 ↦ 𝑥2

𝑠+1 over 𝔽2𝑛

• Even-length field, single multiplication,
good DC/LC resistance

• 4𝑛 equations

Repetitive Structure for BN++

• Repeated multiplier technique (in BN++)
• If prover needs to check multiple multiplications with a same multiplier,

• e.g. 𝑥1 ⋅ 𝑦 = 𝑧1, 𝑥2 ⋅ 𝑦 = 𝑧2

• Then, the prover can prove them in a batched way
• More same multiplier → Smaller signature size

Repetitive Structure for BN++

• Repeated multiplier technique (in BN++)
• If prover needs to check multiple multiplications with a same multiplier,

• e.g. 𝑥1 ⋅ 𝑦 = 𝑧1, 𝑥2 ⋅ 𝑦 = 𝑧2

• Then, the prover can prove them in a batched way
• More same multiplier → Smaller signature size

𝑆1 𝑆2 𝑆3

𝑆1

𝑆2

𝑆3

Serial S-box
(Limited application of repeated multiplier)

Parallel S-box
(Full application of repeated multiplier)

Symmetric Primitive AIM

• Mersenne S-box
• Invertible, high-degree, quadratic relation
• Requires a single multiplication
• Produces 3𝑛 quadratic equations
• Moderate DC/LC resistance

Symmetric Primitive AIM

• Mersenne S-box
• Invertible, high-degree, quadratic relation
• Requires a single multiplication
• Produces 3𝑛 quadratic equations
• Moderate DC/LC resistance

• Repetitive structure
• Parallel application of S-boxes
• Feed-forward construction
• Fully exploit the BN++ optimizations
• Locally-computable output share

Symmetric Primitive AIM

• Mersenne S-box
• Invertible, high-degree, quadratic relation
• Requires a single multiplication
• Produces 3𝑛 quadratic equations
• Moderate DC/LC resistance

• Repetitive structure
• Parallel application of S-boxes
• Feed-forward construction
• Fully exploit the BN++ optimizations
• Locally-computable output share

• Randomized structure
• Affine layer is generated from XOF

Symmetric Primitive AIM

• Mersenne S-box
• Invertible, high-degree, quadratic relation
• Requires a single multiplication
• Produces 3𝑛 quadratic equations
• Moderate DC/LC resistance

• Repetitive structure
• Parallel application of S-boxes
• Feed-forward construction
• Fully exploit the BN++ optimizations
• Locally-computable output share

• Randomized structure
• Affine layer is generated from XOF

Cryptanalytic Scenario

• Single-user setting
• For a random pt, iv ∈ 𝔽2𝑛 × 0,1 𝑛, a single

pair iv, ct is given
• Finding pt∗ ∈ 𝔽2𝑛 such that AIM iv pt∗ = ct

Cryptanalytic Scenario

• Single-user setting
• For a random pt, iv ∈ 𝔽2𝑛 × 0,1 𝑛, a single

pair iv, ct is given
• Finding pt∗ ∈ 𝔽2𝑛 such that AIM iv pt∗ = ct

• Multi-user setting
• For random pairs pt𝑖 , iv𝑖 ∈ 𝔽2𝑛 × 0,1 𝑛,

multiple pairs iv𝑖 , ct𝑖 are given
• Finding pt∗ ∈ 𝔽2𝑛 such that AIM iv𝑖 pt∗ =
ct𝑖 for some 𝑖

Cryptanalytic Scenario

• Single-user setting
• For a random pt, iv ∈ 𝔽2𝑛 × 0,1 𝑛, a single

pair iv, ct is given
• Finding pt∗ ∈ 𝔽2𝑛 such that AIM iv pt∗ = ct

• Multi-user setting
• For random pairs pt𝑖 , iv𝑖 ∈ 𝔽2𝑛 × 0,1 𝑛,

multiple pairs iv𝑖 , ct𝑖 are given
• Finding pt∗ ∈ 𝔽2𝑛 such that AIM iv𝑖 pt∗ =
ct𝑖 for some 𝑖

• IV misuse setting
• For some chosen iv𝑖, multiple pairs iv𝑖 , ct𝑖

are given
• Finding pt∗ ∈ 𝔽2𝑛 such that AIM iv𝑖 pt∗ =
ct𝑖 for some 𝑖

• Expected to be birthday-bound secure

(General) Cryptanalytic Results

Attack Log of Complexity Remark

AIM-I AIM-III AIM-V

Brute-force 149 214.4 280 Gate-count

Algebraic 137.3 194.1 260.1 Details in the next slide

LC 240 360 496 Impossible

DC 125 187 253 Impossible

Quantum 159.8 225.2 291.7 Depth * Complexity

Provable
security

126.4 190.4 254.4 Everywhere preimage resistance in the
random permutation model

(Algebraic) Cryptanalytic Results

Scheme #Var (#Eqs, Deg) Grobner Basis XL Dinur’s Algorithm

Deg. of reg. Time D Time Time Memory

AIM-I 𝑛 (3𝑛, 10) 51 300.8 52 244.8 137.3 138.3

2𝑛 3𝑛, 2 + (3𝑛, 4) 22 214.9 14 150.4 248.3 253.7

3𝑛 (9𝑛, 2) 20 222.8 12 148.0 330.1 346.3

AIM-III 𝑛 (3𝑛, 14) 82 474.0 84 375.3 202.1 203.3

2𝑛 3𝑛, 2 + (3𝑛, 6) 31 310.6 18 203.0 377.5 382.9

3𝑛 (9𝑛, 2) 27 310.8 15 194.1 487.7 512.1

AIM-V 𝑛 (3𝑛, 12) 100 601.1 101 489.7 264.1 265.9

2𝑛 3𝑛, 2 + (3𝑛, 8) 40 406.2 26 289.5 506.3 511.7

3𝑛 6𝑛, 2 + (3𝑛, 4) 47 510.4 20 260.6 716.1 732.3

4𝑛 (12𝑛, 2) 45 530.3 19 266.1 854.4 897.7

Performance Comparison

Scheme pk (B) sig (B) Sign (ms) Verify (ms)

Dilithium2 1312 2420 0.10 0.03

Falcon-512 897 690 0.27 0.04

SPHINCS+-128s 32 7856 315.74 0.35

SPHINCS+-128f 32 17088 16.32 0.97

Picnic1-L1-full 32 30925 1.16 0.91

Picnic3 32 12463 5.83 4.24

Banquet 32 19776 7.09 5.24

Rainier3 32 8544 0.97 0.89

BN++Rain3 32 6432 0.83 0.77

AIMer-L1 (Updated) 32 5904 0.59 0.53

AIMer-L1 (Updated) 32 3840 22.29 21.09

Some Remarks

• Remark
• We submitted AIMer to KpqC and NIST PQC competition
• Our homepage: https://aimer-signature.org
• We are waiting for third-party analysis!

• Future work
• QROM security of AIMer
• More optimization on BN++

https://aimer-signature.org/

Thank you!
Check out aimer-signature.org

Question?

